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Mutual information (MI) based approaches are a popular paradigm for feature selection. Most previous
methods have made use of low-dimensional MI quantities that are only effective at detecting low-order
dependencies between variables. Several works have considered the use of higher dimensional mutual
information, but the theoretical underpinning of these approaches is not yet comprehensive. To fill this
gap, in this paper, we systematically investigate the issues of employing high-order dependencies for
mutual information based feature selection. We first identify a set of assumptions under which the
original high-dimensional mutual information based criterion can be decomposed into a set of low-
dimensional MI quantities. By relaxing these assumptions, we arrive at a principled approach for con-
structing higher dimensional MI based feature selection methods that takes into account higher order
feature interactions. Our extensive experimental evaluation on real data sets provides concrete evidence
that methodological inclusion of high-order dependencies improve MI based feature selection.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Feature selection is an important task in data mining and
knowledge discovery. Effective feature selection can improve
performance while reducing the computational cost of learning
systems. In this paper, we focus on mutual information (MI) based
feature selection, which is a very popular filter paradigm. Com-
pared to wrapper and embedded approaches [1], filter methods,
such as those based on the MI criteria, are generally less opti-
mized, but possess the major advantage of being learning-model
independent and also typically less computationally intensive.

MI based feature selection is concerned with identifying a
subset S of m features fX1;…;Xmg within the original set X of M
features in a data set, that maximizes the multidimensional joint
MI between features and the class variable C, defined as

IðS;CÞ9
X

X1 ;…;Xm ;C

PðX1;…;Xm;CÞlog PðX1;…;Xm;CÞ
PðX1;…;XmÞPðCÞ

ð1Þ

This criterion possesses a solid theoretical foundation, in that
the MI can be used to write both an upper and lower bound on the
Bayes error rate [2,3]. Nevertheless, the problems of estimating
high-dimensional joint MI, and more generally estimating high-
. Vinh).
d Information Systems, The
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dimensional probability distribution, especially from small sam-
ples, are long-standing challenges in statistics. Therefore, a rich
body of work in the MI-based feature selection literature
approaches this difficulty by approximating the high-dimensional
joint MI with low-dimensional MI terms. A particularly popular
and successful class of methods makes use of the following cri-
terion, which is the combination of low-dimensional MI terms
known as ‘relevancy’ and ‘redundancy’,

f ðXmÞ9 IðXm;CÞ�β
X
Xj AS

IðXm;XjÞ ð2Þ

Under this framework, the features are often selected in an
incremental manner: given a set S of m�1 already selected fea-
tures fX1;…;Xm�1g, the next feature Xm is selected so that f ðXmÞ is
maximized. The term IðXm;CÞ measures the relevancy of Xm to the
class variable C, while

P
Xj ASIðXm;XjÞ quantifies the redundancy

between Xm and the selected features in S, and β plays the role of a
balancing factor. Many MI-based feature selection heuristics can
be shown to be variations of (2) [3], including highly influential
methods such as the Mutual Information Feature Selection (MIFS)
criterion (βA ½0;1�) [4], and the Minimum Redundancy Maximum
Relevance (MRMR) criterion (β¼ 1=jSj ) [5].

It is noted that the two-dimensional MI can only detect pairwise
variable interactions, either between two features or between a
feature and the class variable. More complicated variable interac-
tions cannot be identified with the two-dimensional MI. Fig. 1
provides an illustrative example of two variables (switches) that
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Fig. 1. An example of high-order variable interaction.
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jointly control the target variable (the lamp). Knowing the state of
either switch alone provides no information about whether the
lamp is on or off. Only the joint state of both switches provides
comprehensive knowledge on the state of the lamp. The pairwise
mutual information cannot detect this type of multi-variable
interaction.

To address this shortcoming, several works have considered the
use of higher-dimensional MI quantities, such as the joint rele-
vancy IðXiXj;CÞ [6], the conditional relevancy IðXi;C jXjÞ [3] and the
conditional redundancy IðXi;Xj jCÞ [7]. Brown et al. [3] showed
that many such proposed methods can fit within the para-
meterized criterion:

JðXmÞ9 IðXm;CÞ�β
X
Xj AS

IðXm;XjÞþγ
X
Xj AS

IðXm;Xj jCÞ: ð3Þ

For example, the Joint Mutual Information (JMI) criterion [6] can
be obtained with β¼ γ ¼ 1=jSj . The Conditional Informative Fea-
ture Extraction (CIFE) criterion [8] is obtained with β¼ γ ¼ 1. The
extended MRMR criterion [9] is a special case when β¼ γ. The
objective in (2), including MRMR and MIFS, are clearly special
cases where γ ¼ 0. These methods can detect higher order variable
dependencies, in particular those between two features and the
class variable. However, all the mentioned criteria were hand-
crafted and their theoretical underpinning is not well understood.
In particular, (i) in retrospect, we would like to understand how
these criteria are related to the original full joint MI criterion in (1),
and (ii) moving forward, we would like to leverage this under-
standing to design higher-order MI based feature selection
methods in a more systematic and methodological manner. Recent
work has partially elucidated the former question [10,3], while to
our knowledge, the latter question has not been investigated.

Contributions: To address the identified gap, in this paper, we
study the connection between the low-dimensional MI based cri-
teria, such as the ones in (2) and (3), and the ultimate high-
dimensional MI objective in (1). The benefit of such an investigation
is two-fold: (i) to establish the theoretical underpinnings for heur-
istics based on (2) and (3), and (ii) to inspire a systematic and
methodological development of higher-dimensional MI-based fea-
ture selection techniques by relaxing the identified assumptions.
We take a first step towards this direction by proposing several
novel MI based feature selection approaches that take into account
higher-order dependency between features, in particular three-way
feature interaction IðXi;Xj jXkÞ. Our extensive experimental evalua-
tion shows that systematic inclusion of higher-dimensional MI
quantities improves the feature selection performance.
2. Assumptions underlying low-dimensional MI-based feature
selection heuristics

Our first goal in this paper is to strive for a more comprehen-
sive understanding of the theoretical underpinnings behind var-
ious MI based feature selection heuristics. Several recent works
have partially addressed this question. Balagani and Proha [10]
identified a set of assumptions underlying the objective (2) while
Brown et al. [3] investigated the assumptions underlying the more
general objective (3). In this section, we continue to develop
further along these lines, while making some new connections
between the previous work.

In [10], Balagani and Proha set out to identify the conditions
under which the high-dimensional MI in (1) could be decomposed
exactly as a sum of low-dimensional relevancy and redundancy MI
terms, i.e.,

IðS;CÞ �
Xm
i ¼ 1

IðXi;CÞ�
Xm
i ¼ 2

X
jo i

IðXi;XjÞ ð4Þ

They showed that under the following three assumptions, the
identity (4) holds true.

Assumption 1. The selected features fX1;X2;…;Xm�1g are inde-
pendent, i.e.,

PðX1;X2;…;Xm�1Þ ¼ ∏
m�1

i ¼ 1
PðXiÞ ð5Þ

Assumption 2. The selected features fX1;X2;…;Xm�1g are con-
ditionally independent given the feature Xm, i.e.,

PðX1;X2;…;Xm�1 jXmÞ ¼ ∏
m�1

i ¼ 1
PðXi jXmÞ: ð6Þ

Assumption 3 (Naive Bayes independence assumption). Each fea-
ture independently influences the class variable, i.e.,

PðXm jX1;…;Xm�1;CÞ ¼ PðXm jCÞ: ð7Þ

We will argue here briefly that, of these three assumptions,
Assumption 1 is a strong condition. More specifically, the condi-
tion in (5) implies that all features in S are pairwise independent,
indeed

8Xi;XjAS : PðXi;XjÞ ¼
X

S⧹fXi ;Xjg
PðX1;X2;…;Xm�1Þ

¼
X

S⧹fXi ;Xjg
PðX1ÞPðX2Þ…PðXm�1Þ ¼ PðXiÞPðXjÞ

Furthermore, since at design time, it is not possible to anticipate
which features of X will be selected in S, it is necessary that all
features in the original feature set X are also pairwise independent,
for the identity (4) to hold true on any selected subset of X. There-
fore, with this assumption, we effectively have IðXi;XjÞ ¼ 0 8 ia j,
implying that the incremental objective in (2) reduces to the sim-
plistic objective of f ðXmÞ ¼ IðXm;CÞ, i.e., selecting the m-th highest
ranking feature, in terms of the MI shared with C, without taking
into account the redundancy with the selected features.

2.1. An alternative view

In this section, we present an alternative view on the issue of
approximating high-dimensional MI with low-dimensional MI
terms. First, note that even if the high-dimensional MI were easily
estimable, the problem of identifying a subset S that shares the
maximal MI with C remains a challenging combinatorial optimi-
zation problem without known efficient solution. An exhaustive
search will be of Oð2MÞ time complexity, while restricting the
maximum size of S to koM will reduce the cost to OðMkÞ, but will
still be expensive. As such, an obvious iterative greedy strategy is
to select one feature at a time: given the set S¼ fX1;…;Xm�1g of
m�1 already selected features, the m-th feature is chosen max-
imizing the following objective function:

arg max
Xm AX⧹S

IðS [ Xm;CÞ ð8Þ

We will now try to understand under what conditions, low-order
MI based heuristics such as MRMR and MIFS in (2) will produce
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the same result as (8), i.e.,

arg max
Xm AX⧹S

IðS [ Xm;CÞ � arg max
Xm AX⧹S

IðXm;CÞ�
X
Xj AS

IðXm;XjÞ ð9Þ

Comparing (9) and (4), there is a subtle yet critical difference
between our viewpoint and Balagani and Proha's: while Balagani
and Proha aim to match the global objective function, we aim at
matching the outcome of the greedy iterative optimization pro-
cedure. We point out here that MRMR [4] and MIFS [5], among
other similar heuristics, aim to approximate the incremental
optimization problem in (8), rather than to approximate the ori-
ginal joint mutual information criterion IðS;CÞ. We now prove the
following result.

Theorem 1. Under Assumptions 2 and 3, the equality (9) holds true.

Proof. From the chain rule of mutual information, we have
IðS [ Xm;CÞ ¼ IðS;CÞþ IðXm;C jSÞ. Since IðS;CÞ remains constant w.r.
t. Xm, we have argmaxXm AX⧹SIðS [ Xm;CÞ � argmaxXm AX⧹SIðXm;

C jSÞ. As proven in [11], the conditional MI IðXm;C jSÞ can be
expressed as

IðXm;C jSÞ ¼ IðXm;CÞ�½IðXm; SÞ� IðXm; SjCÞ�; ð10Þ

we can therefore match the ‘relevancy’ IðXm;CÞ term. Next, we
need to match the ‘redundancy’ term, i.e.,

arg min
Xm AX⧹S

IðXm; SÞ� IðXm; SjCÞ � arg min
Xm AX⧹S

X
Xj AS

IðXm;XjÞ ð11Þ

It is easily seen that under Assumption 3, IðXm; SjCÞ ¼HðXm jCÞ�
HðXm jC; SÞ ¼HðXm jCÞ�HðXm jCÞ ¼ 0. Further, under Assumption 2

IðXm; SÞ ¼HðSÞ�HðSjXmÞ ¼HðSÞ�
X
Xj AS

HðXj jXmÞ

¼HðSÞ�
X
Xj AS

HðXjÞþ
X
Xj AS

IðXj;XmÞ ð12Þ

Taking into account the fact that HðSÞ�P
Xj ASHðXjÞ is constant

w.r.t. Xm, we have that (11) holds true.□

Thus, it can be seen that by matching the outcome of the actual
incremental optimization procedure, but not the objective func-
tion, we are now able to drop the strong Assumption 1. Note that
for this theoretical analysis, we have omitted the balancing factor
β, which is of a heuristical nature. β was originally introduced in
MIFS [4] and MRMR [5] to balance the relevancy and redundancy
terms. If Assumptions 2 and 3 hold true, then naturally β is
unnecessary, as all the equalities hold in an exact sense. Therefore,
β can be regarded as a practical adjustment to be used when the
required assumptions do not hold.

2.2. An alternative sufficient condition set

The decomposition (10) of the conditional MI IðXm;C jSÞ, as
observed in [11], brings about an interesting insight: the ‘total
redundancy’ comprises an unconditional redundancy term
IðXm; SÞ, minus a class-conditional redundancy term IðXm; SjCÞ. In
MIFS/MRMR formulation in (2), only the unconditional redun-
dancy was considered. This is a result of Assumption 3, under
which IðXm; SjCÞ vanishes, while IðXm; SÞ is decomposed into a sum
of pairwise MI terms under Assumption 2. In this section, we
investigate the matter further by asking, provided we do not use
the naive Bayes independence Assumption 3, what other
assumption is needed to decompose IðXm; SjCÞ into sums of low-
dimensional MI terms. Brown et al. [3] proposed such an
assumption, which can be seen as an analogue to Assumption 2, as
follows:
Assumption 3a. The selected features fX1;X2;…;Xm�1g are con-
ditionally independent given the feature Xm and the class C, i.e.,

PðX1;X2;…;Xm�1 jC;XmÞ ¼ ∏
m�1

i ¼ 1
PðXi jC;XmÞ: ð13Þ

Now under Assumption 3a,

IðXm; SjCÞ ¼HðSjCÞ�HðSjC;XmÞ
¼HðSjCÞ�

X
Xj AS

HðXj jC;XmÞ

¼HðSjCÞ�
X
Xj AS

HðXj jCÞþ
X
Xj AS

IðXj;Xm jCÞ ð14Þ

Substituting (14) into the l.h.s. of (11), and taking into account the
fact that HðSjCÞ�P

Xj ASHðXj jCÞ is constant w.r.t. Xm, then the
problem of minimizing the ‘total redundancy’ is equivalent to

arg min
Xm AX⧹S

IðXm; SÞ� IðXm; SjCÞ � arg min
Xm AX⧹S

X
Xj AS

IðXm;XjÞ� IðXm;Xj jCÞ
� �

ð15Þ
The new redundancy criterion in the r.h.s. of (15) is interesting, as
it reflects closely the fact that the original high-dimensional
redundancy term consists of an unconditional part, and a class-
conditioned part (2nd and 3rd term of (10) respectively). Now, if
we introduce an additional assumption:

Assumption 3b. Features in S and Xm are pairwise class-
conditionally independent, i.e.,

PðXm;Xj jCÞ ¼ PðXm jCÞPðXj jCÞ 8XjAS: ð16Þ

then it is easily seen that the class-conditioned redundancy terms
IðXm;Xj jCÞ's in (15) will also vanish, and so (15) again reduces to
(11). Thus together, Assumptions 2, 3a and 3b achieve the same
effect as Assumptions 2 and 3. An interesting remark to note is
that Assumption 3 is a strong condition, which can be proven to
entail both Assumptions 3a and 3b as corollaries.

Theorem 2. Assumption 3 implies Assumptions 3a and 3b as
corollaries.

Proof. (i) Assumption 3 ) Assumption 3a: we factor the l.h.s. of
(13) as

PðX1;X2;…;Xm�1 jC;XmÞ ¼ PðX1 jC;XmÞ � PðX2 jC;Xm;X1Þ
�⋯� PðXm�1 jC;Xm;X1;…;Xm�2Þ ð17Þ

From Assumption 3 we have

PðX2 jC;Xm;X1Þ ¼ PðX2 jCÞ
PðX2 jC;XmÞ ¼ PðX2 jCÞ ð18Þ

Thus PðX2 jC;Xm;X1Þ ¼ PðX2 jC;XmÞ. Similarly,

PðX3 jC;Xm;X1;X2Þ ¼ PðX3 jC;XmÞ
⋮ ð19Þ

PðXm�1 jC;Xm;X1;…;Xm�2Þ ¼ PðXm�1 jC;XmÞ ð20Þ
Substituting into (17) we have

PðX1;X2;…;Xm�1 jC;XmÞ ¼ ∏
m�1

i ¼ 1
PðXi jC;XmÞ: ð21Þ

(ii) Assumption 3 ) Assumption 3b: We factor the l.h.s. of (16) as

PðXm;Xj jCÞ ¼ PðXj jCÞPðXm jXj;CÞ ¼ PðXj jCÞPðXm jCÞ ð22Þ
with the last equality being due to PðXm jXj;CÞ ¼ PðXm jCÞ, as per
Assumption 3.□

The advantage of adopting Assumptions 3a and 3b over
Assumption 3 is that, besides making a set of weaker assumptions,
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we can individually omit Assumption 3b, giving rise to a new class
of heuristics that makes use of the class-conditioned redundancy,
which is the objective in (3).
3. Relaxing the assumptions

In the previous section, we have studied the assumptions
underlying low-dimensional MI-based criteria for feature selec-
tion. While the previous work [3,10] retrospectively investigated
these assumptions in regards to existing heuristics, we go one step
forward in asking how these assumptions can guide the systematic
and methodological development of new approaches for MI based
feature selection. First, recall from previous sections that our goal
is to carry out arg maxXm AX⧹SIðS [ Xm;CÞ in an incremental fash-
ion, and further recall that

arg max
Xm AX⧹S

IðS [ Xm; CÞ � arg max
Xm AX⧹S

IðXm;C jSÞ � arg max
Xm AX⧹S

IðXm; CÞ�½IðXm; SÞ� IðXm; SjCÞ�

ð23Þ
We now pay attention to the high-dimensional redundancy

term IðXm; SÞ. Note that Assumption 2, which is needed for
decomposing the high-dimensional redundancy term IðXm; SÞ, can
be relaxed to reflect the higher-order dependency between fea-
tures. For example:

Assumption 2'. The selected features fX1;X2;…;Xm�1g are con-
ditionally independent given the feature Xm and any feature XjAS , i.e.,

PðX1;X2;…;Xm�1 jXmÞ ¼ PðXj jXmÞ ∏
m�1

i ¼ 1
ia j

PðXi jXm;XjÞ ð24Þ

Under this relaxed assumption, we can show that

Theorem 3. Under Assumption 2' we have

IðXm; SÞ ¼ IðXm;XjÞþ
X

Xi AS;ia j

IðXm;Xi jXjÞþΩ ð25Þ

where Ω is a constant w.r.t. Xm.

Proof.

IðXm; SÞ ¼HðSÞ�HðSjXmÞ

¼HðSÞ� HðXj jXmÞþ
Xm�1

i ¼ 1;ia j

HðXi jXm;XjÞ
8<
:

9=
;

¼HðSÞ�HðXjÞþ IðXm;XjÞ�
X

Xi AS;ia j

HðXi jXjÞ

þ
X

Xi AS;ia j

IðXi;Xm jXjÞ ¼ IðXm;XjÞþ
X

Xi AS;ia j

IðXm;Xi jXjÞþΩ

where Ω¼HðSÞ�HðXjÞ�
P

Xi AS;ia jHðXi jXjÞ is constant w.r.t. Xm.□

To avoid the need of identifying a particular feature XjAS to
condition on, this process can be averaged over all XjAS, resulting
in

IðXm; SÞ ¼
1
jSj

X
Xj AS

IðXm;XjÞþ
X
Xi A S
ia j

IðXm;Xi jXjÞ
8<
:

9=
;þΩ0 ð26Þ

where Ω0 is also a constant w.r.t. Xm. This newly obtained redun-
dancy quantity takes into account the second-order interactions
between the features, i.e., the three-way feature interaction terms
IðXm;Xi jXjÞ. We note that this is only one example of how our
analysis in this paper could be useful to guide the systematic
development of novel MI-based feature selection techniques that
make use of higher-dimensional MI, e.g., 3-dimensional or higher,
provided that the sample size is sufficiently large to allow rea-
sonably accurate estimates. Assumptions 2’ and 3a can be relaxed
further in a similar manner to capture higher-order feature–fea-
ture and feature–class dependencies.
4. RelaxMRMR: a novel higher-order MI-based feature selec-
tion approach

In this section, we design a novel MI-based criterion for feature
selection based on the theoretical analysis in Section 3. We shall
make use of Assumptions 2' and 3a. By substituting the new
redundancy measure in (26) into the objective in (23), we arrive at
the following criterion, which is exactly equivalent to the high-
dimensional MI objective IðXm;C jSÞ:
Form�0:

max
Xm AX⧹S

IðXm;CÞ�
1
jSj

X
Xj AS

IðXm;XjÞþ
X
Xi A S
ia j

IðXm;Xi jXjÞ
8<
:

9=
;

8<
:

þ
X
Xj AS

IðXm;Xj jCÞ
9=
; ð27Þ

Unfortunately, in practice, these assumptions do not usually
hold true. Therefore, some normalization is needed to get the right
balance between different MI quantities, i.e., relevancy IðXm;CÞ,
redundancy IðXm;XjÞ, class-relevant redundancy IðXm;Xj jCÞ and
second-order interaction IðXm;Xi jXjÞ. This normalization is simi-
larly required by other successful heuristics, such as MRMR and
JMI. In the ideal form of MRMR, there is also no need to regulate
the weight between the relevance and redundancy. However, in
reality, normalization is usually desired as the required assump-
tions for these criteria may not always hold true. In fact, according
to Brown et al. [3], normalizing the redundancy terms by the
selected feature set size is essential for a good criterion. This
ensures that the relevancy of a feature remains informative when
the number of selected features increases.

Our first attempt is to only normalize the class-relevant
redundancy terms IðXm;Xj jCÞ by the number of selected features,
resulting in:

Form�1:

max
Xm AX⧹S

IðXm;CÞ� 1
jSj

X
Xj AS

IðXm;XjÞþ
1
jSj

X
Xj AS

IðXm;Xj jCÞ
8<
:

� 1
jSj

X
Xj AS

X
Xi AS;ia j

IðXm;Xi jXjÞ
9=
; ð28Þ

This can be regarded as the JMI criterion in (3) ðβ¼ γ ¼ 1=jSj Þ
with an additional consideration about the second-order interactions
between the feature under consideration and the selected feature set.
However, the problem in the above normalization is that the sum of
second-order feature interaction terms IðXm;Xi jXjÞ's is still so high
that it may outweigh the importance of other terms. As a result, we
propose to further normalize this term as

Form�2:

max
Xm AX⧹S

IðXm;CÞ�
1
jSj

X
Xj AS

IðXm;XjÞþ
1
jSj

X
Xj AS

IðXm;Xj jCÞ
8<
:

� 1
jSJS�1j

X
Xj AS

X
Xi AS;ia j

IðXm;Xi jXjÞ
9=
; ð29Þ



Table 1
Data set description. The error rate is obtained by a linear SVM using all features.

Data #Features (M) #Instances (N) #Classes Instances–features ratio (N=M) Problem scale (MnN) Err(%) Source

Wine 13 178 3 13.69 2314 3.04 [14]
Parkinsons 22 195 2 8.86 4290 12.93 [14]
Ionosphere 33 351 2 10.64 11,583 12.36 [14]
Breast 30 569 2 18.97 17,070 3.13 [14]
Lung 325 73 7 0.22 23,725 12.33 [5]
Segment 19 2310 7 121.58 43,890 6.36 [14]
Cardio 21 2126 3 101.24 44,646 10.73 [14]
Steel 27 1941 7 71.89 52,407 30.06 [14]
Musk 166 476 2 2.87 79,016 15.13 [14]
Waveform 21 5000 3 238.10 105,000 13.12 [14]
Arrhythmia 257 430 2 1.67 110,510 21.07 [14]
Colon 2000 62 2 0.03 124,000 17.74 [5]
Landsat 36 6435 6 178.75 231,660 13.60 [14]
Spambase 57 4601 2 80.72 262,257 9.72 [14]
Lymphoma 4026 96 9 0.02 386,496 3.12 [5]
Semeion 256 1593 10 6.22 407,808 6.26 [14]
Leukemia 7129 73 2 0.01 520,417 1.37 [5]
NCI60 9996 60 10 0.01 599,760 43.33 [5]

Table 2
SVM error rate (%) comparison among different normalization forms, with Form-0
serving as the baseline.

Data Form-0 Form-1 Form-2

Wine 9.1070.18 7.2370.21(�) 6.3670.25(�)
Parkinsons 16.8670.08 15.7770.17(�) 15.4570.19(�)
Ionosphere 15.6570.06 13.1970.02(�) 12.7770.02(�)
Breast 4.4770.02 3.9770.01(�) 3.7370.01(�)
Lung 28.8570.62 22.5870.64(�) 12.7971.24(�)
Segment 12.1070.94 12.1470.95(¼) 10.6771.01(�)
Cardio 14.7470.12 14.2970.15(¼) 13.3070.12(�)
Steel 38.9370.68 37.3970.74(�) 37.1270.61(�)
Musk 33.5670.06 25.9870.31(�) 25.5070.32(�)
Waveform 18.4170.52 21.7470.51(þ) 18.0370.55(�)
Arrhythmia 24.7370.03 25.6570.02(þ) 22.5170.04(�)
Colon 27.2970.65 17.1970.36(�) 12.6170.44(�)
Landsat 15.6270.25 16.4470.24(þ) 15.9570.25(þ)
Spambase 17.1970.22 19.5570.26(þ) 13.9770.30(�)
Lymphoma 31.3370.11 11.1070.64(�) 9.0470.63(�)
Semeion 33.3371.17 23.2672.15(�) 29.9371.56(�)
Leukemia 9.5370.01 5.5670.03(�) 3.6270.05(�)
NCI60 85.7770.19 69.7070.15(�) 44.3071.89(�)

Win/Tie/Loss – 4/2/12 1/0/17
(for Form-0 vs. the alternative)

‘þ ’/‘� ’/‘¼ ’ indicates that Form-0 performs ‘better’/‘worse’/‘equally well’ compared
to the competitor according to the t-test.
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This normalization essentially aims to bring all the MI terms to
the same scale. Note that the above criteria take into account the
second-order feature interaction terms IðXm;Xi jXjÞ which has
never been explored in previous research to our knowledge.

4.1. Complexity analysis

We provide a complexity analysis for the newly designed cri-
teria. Suppose the number of records in the data set is N, the
number of features is M. Both mutual information IðX;YÞ and
conditional mutual information IðX;Y jZÞ admits a time complexity
of O(N) since all the data points need to be visited for probability
estimation.

Complexity of MIFS/MRMR/JMI and similar existing criteria:
Suppose the number of features to be selected is k, then the
complexity of MI-based feature selection algorithms, such as
MRMR, MIFS, JMI and similar existing criteria are Oðk2MNÞ.
Note that for improved efficiency, the redundancy and class-
conditional redundancy terms could be cached in M �M tables
for re-use.

Complexity of RelaxMRMR: Compared to MRMR, the time for
RelaxMRMR is augmented by the time required for computing
the second-order feature interaction terms. The time complexity
for RelaxMRMR is Oðk3MNÞ. Again for improved efficiency,
the second-order feature interaction terms can be cached in
a M �M �M table for re-use. RelaxMRMR is a generally more
computationally intensive since more information is taken into
account.
2 http://vinhnguyenx.net/software.
5. Experimental evaluation

In order to evaluate the performance of the newly proposed
RelaxMRMR method, we performed an extensive experimental
evaluation on a large number of real data sets detailed in Table 1.
These data sets possess a wide range of characteristics, including
varying numbers of features, instances and classes. The selected
data sets represent a significant proportion of real world problems.
For continuous numeric features, a discretization procedure is
performed to categorize the original values into five equal-size
bins. The implementation of RelaxMRMR in Matlab/Cþþ will be
made available on our website, where the implementations for
some most popular MI-based feature selection approaches are also
available.2

First, we evaluate the effectiveness of different normalization
strategies and identify the best normalization approach. Based on
this evaluation, we then compare the best-performing
RelaxMRMR variant with other incremental MI-based methods
in terms of effectiveness and efficiency. In addition, we also
compare RelaxMRMR with some other representative non-
incremental MI-based approaches and non MI-based approaches.

Our experimental protocol is as follows: for data sets with more
than 50 features, we selected the top 50 features, while for lower
dimensional data sets, all features are incrementally selected.
Similarly to some previous research [12,13,9], for each feature set
size, we employed a linear support vector machine (with the
regularization parameter set to 1) to obtain the 10-fold cross-
validation error rate (or leave-one-out validation error if the data

http://vinhnguyenx.net/software


Table 3
Error rate (%) comparison between RelaxMRMR and other incremental MI-based criteria.

Dataset RelaxMRMR MIM MIFS(0.5) MIFS(1) MRMR CIFE JMI

SVM
Wine 6.470.3 5.970.2(¼) 6.670.2(¼) 8.670.2(þ) 6.470.3(¼) 9.170.2(þ) 6.270.3(¼)
Parkinsons 15.470.2 15.270.1(¼) 14.170.1(�) 16.270.2(þ) 15.170.2(�) 15.270.1(¼) 14.870.1(¼)
Ionosphere 12.870.0 17.270.0(þ) 13.470.0(þ) 13.370.0(þ) 13.470.0(þ) 16.570.0(þ) 16.770.0(þ)
Breast 3.770.0 4.970.0(þ) 4.270.0(þ) 3.970.0(þ) 3.970.0(þ) 4.370.0(þ) 3.970.0(¼)
Lung 12.871.2 19.871.8(þ) 12.371.1(¼) 14.970.9(þ) 12.971.0(¼) 26.870.7(þ) 13.570.9(¼)
Segment 10.771.0 16.771.6(þ) 11.571.0(þ) 12.171.0(þ) 10.771.0(¼) 11.271.0(þ) 11.371.0(þ)
Cardio 13.370.1 13.370.1(¼) 14.270.1(þ) 14.670.1(þ) 13.670.1(¼) 15.270.1(þ) 13.370.1(¼)
Steel 37.170.6 41.270.6(þ) 37.870.7(¼) 37.970.8(¼) 38.270.6(þ) 39.070.7(þ) 40.470.7(þ)
Musk 25.570.3 26.470.2(þ) 25.570.4(¼) 24.970.4(¼) 25.270.3(¼) 30.670.1(þ) 25.670.2(¼)
Waveform 18.070.5 20.670.8(þ) 20.670.5(þ) 22.770.6(þ) 18.070.5(¼) 19.870.4(þ) 18.170.5(¼)
Arrhythmia 22.570.0 23.470.1(þ) 24.170.0(þ) 24.770.0(þ) 23.270.0(þ) 25.770.0(þ) 23.070.1(¼)
Colon 12.670.4 13.570.2(þ) 16.370.4(þ) 21.070.2(þ) 13.670.4(þ) 31.470.3(þ) 14.670.6(þ)
Landsat 16.070.3 16.070.2(¼) 16.570.2(þ) 16.670.3(þ) 15.970.3(¼) 15.570.3(�) 15.670.2(�)
Spambase 14.070.3 13.870.3(¼) 17.970.3(þ) 20.270.4(þ) 13.970.3(¼) 20.270.2(þ) 13.970.3(¼)
Lymphoma 9.070.6 16.370.8(þ) 7.970.6(�) 12.270.4(þ) 8.470.6(�) 29.270.2(þ) 8.870.5(¼)
Semeion 29.971.6 39.172.5(þ) 22.172.4(�) 23.472.2(�) 32.671.6(þ) 35.471.2(þ) 34.371.6(þ)
Leukemia 3.670.1 4.570.0(þ) 10.670.1(þ) 9.670.0(þ) 3.670.1(¼) 12.570.1(þ) 3.870.0(¼)
NCI60 44.371.9 50.571.5(þ) 51.271.3(þ) 60.370.7(þ) 45.372.0(¼) 86.570.2(þ) 45.671.9(þ)

Win/Tie/Loss – 13/5/0 11/4/3 15/2/1 6/10/2 16/1/1 6/11/1

Naive Bayes
Wine 14.872.1 17.372.3(þ) 15.072.2(¼) 15.072.1(¼) 15.272.0(¼) 15.972.1(¼) 14.972.1(¼)
Parkinsons 19.070.4 19.870.2(¼) 20.670.3(þ) 20.070.3(þ) 18.770.3(�) 21.070.3(þ) 19.370.2(¼)
Ionosphere 27.570.2 27.870.3(¼) 28.670.1(þ) 27.770.1(¼) 29.470.1(þ) 31.470.1(þ) 29.370.2(þ)
Breast 26.370.2 33.670.2(þ) 23.670.3(�) 23.570.2(�) 27.170.3(¼) 24.570.2(�) 31.370.1(þ)
Lung 16.072.7 27.573.2(þ) 15.571.8(¼) 15.471.6(¼) 15.571.8(¼) 32.571.1(þ) 16.972.3(¼)
Segment 27.573.0 37.374.7(þ) 27.573.0(¼) 30.672.8(þ) 27.573.0(¼) 31.072.8(þ) 28.873.0(¼)
Cardio 17.070.1 18.570.0(þ) 17.270.1(¼) 18.170.0(þ) 17.170.1(¼) 18.970.0(þ) 18.270.0(þ)
Steel 44.571.2 47.470.4(þ) 41.770.5(�) 44.771.0(¼) 44.471.1(¼) 46.170.9(þ) 45.870.6(¼)
Musk 28.770.2 31.770.1(þ) 32.470.2(þ) 30.670.3(þ) 29.270.3(þ) 34.170.0(þ) 30.570.1(þ)
Waveform 23.771.3 27.471.4(þ) 24.571.1(¼) 27.471.3(þ) 22.971.2(¼) 24.071.1(¼) 23.371.2(¼)
Arrhythmia 24.070.1 28.770.1(þ) 25.170.1(þ) 28.170.1(þ) 23.870.1(¼) 34.270.0(þ) 29.070.1(þ)
Colon 10.870.3 11.970.1(þ) 16.470.2(þ) 14.470.2(þ) 12.370.3(þ) 24.370.1(þ) 12.770.4(þ)
Landsat 27.170.8 30.471.4(þ) 27.770.8(þ) 28.470.8(þ) 27.470.9(þ) 27.570.8(þ) 27.070.8(¼)
Spambase 10.670.6 14.070.7(þ) 10.670.5(¼) 12.070.3(þ) 11.170.5(þ) 12.870.3(þ) 12.470.6(þ)
Lymphoma 11.571.9 20.571.3(þ) 12.771.0(þ) 19.671.1(þ) 10.571.6(�) 42.070.1(þ) 10.971.3(¼)
Semeion 38.071.5 48.572.8(þ) 28.872.7(�) 29.772.3(�) 40.971.7(þ) 47.770.9(þ) 43.671.9(þ)
Leukemia 3.270.9 4.771.0(þ) 4.370.4(¼) 8.970.2(þ) 1.570.2(¼) 16.270.2(þ) 2.270.7(¼)
NCI60 40.272.7 43.172.4(þ) 41.572.0(¼) 54.470.9(þ) 41.473.0(þ) 85.770.1(þ) 37.772.6(�)

Win/Tie/Loss – 16/2/0 7/8/3 12/4/2 7/9/2 15/2/1 8/9/1

KNN
Wine 5.970.2 5.870.3(¼) 6.270.3(¼) 7.770.2(þ) 5.870.2(¼) 8.870.2(þ) 5.870.2(¼)
Parkinsons 8.670.1 10.270.1(þ) 9.070.1(¼) 9.270.1(þ) 8.870.1(¼) 9.070.1(þ) 9.470.1(þ)
Ionosphere 13.170.1 14.170.0(þ) 12.870.0(¼) 12.770.1(¼) 12.870.0(¼) 14.470.1(þ) 13.270.0(¼)
Breast 3.570.0 5.070.0(þ) 4.670.0(þ) 4.370.0(þ) 3.670.0(¼) 4.970.0(þ) 4.270.0(þ)
Lung 13.170.9 26.871.0(þ) 14.070.9(þ) 20.170.8(þ) 14.470.9(þ) 34.870.2(þ) 15.770.8(þ)
Segment 5.870.7 9.070.8(þ) 6.070.7(þ) 6.570.7(þ) 5.870.7(¼) 5.970.7(¼) 5.870.7(¼)
Cardio 10.170.2 9.770.2(�) 13.070.3(þ) 13.670.3(þ) 11.070.3(þ) 11.070.1(þ) 9.470.2(�)
Steel 33.471.3 36.171.2(þ) 34.771.3(þ) 34.471.3(þ) 34.271.3(þ) 34.071.2(¼) 34.071.2(¼)
Musk 21.170.4 25.070.2(þ) 22.070.4(þ) 22.270.5(þ) 21.270.4(¼) 18.370.3(�) 23.070.2(þ)
Waveform 23.470.6 26.771.0(þ) 27.870.4(þ) 30.270.6(þ) 23.370.6(¼) 26.770.4(þ) 23.470.6(¼)
Arrhythmia 25.370.1 28.570.1(þ) 25.770.1(¼) 28.070.1(þ) 26.470.1(þ) 32.870.1(þ) 28.270.0(þ)
Colon 14.770.0 15.770.1(þ) 24.270.1(þ) 20.770.1(þ) 14.670.1(¼) 26.770.1(þ) 16.670.1(þ)
Landsat 12.070.7 12.970.7(þ) 12.470.7(þ) 12.670.7(þ) 12.070.7(¼) 12.270.7(þ) 12.370.7(þ)
Spambase 14.471.3 14.371.4(¼) 18.171.1(þ) 20.471.1(þ) 14.371.4(¼) 15.170.9(¼) 14.471.4(¼)
Lymphoma 12.470.5 18.070.6(þ) 13.470.4(þ) 20.570.2(þ) 9.870.7(�) 40.370.4(þ) 11.870.5(�)
Semeion 34.372.0 43.973.3(þ) 26.073.1(�) 28.872.6(�) 37.472.2(þ) 37.271.6(þ) 39.272.3(þ)
Leukemia 2.470.0 4.870.0(þ) 18.170.3(þ) 19.570.4(þ) 3.070.0(þ) 14.670.3(þ) 2.770.0(þ)
NCI60 42.271.4 51.070.9(þ) 49.871.2(þ) 55.971.4(þ) 46.671.1(þ) 84.670.1(þ) 49.171.0(þ)
Win/Tie/Loss - 15/2/1 13/4/1 16/1/1 7/10/1 14/3/1 10/6/2

‘þ ’/‘� ’/‘¼ ’ indicates that RelaxMRMR performs ‘better’/‘worse’/‘equally well’ compared to the competitor according to the t-test.
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set contains less than 100 instances). Additionally, the same sta-
tistics are also collected from two other classifiers, namely Naive
Bayes (NB) and kNN classifier (k¼3). As such, given a data set, a
certain classifier and a specific feature selection method, a plot of
the cross-validation error rate vs. the number of features can be
drawn and we can also compute the mean 7 standard deviation
%-error rate across a range of feature set size (from 1 to the
maximum number of selected features).



Fig. 2. Performance comparison of RelaxMRMR to other incremental MI-based criteria. Win/Tie/Loss means RelaxMRMR performs ‘better’/‘equally-well’/‘worse’ than the
alternatives. (a) SVM, (b) NB, (c) kNN, (d) Overall.

Fig. 3. Detailed performance comparison of RelaxMRMR to other incremental MI-based criteria on each data set (sorted by #Features� #Instances) across all classifiers. Win/
Tie/Loss means RelaxMRMR performs ‘better’/‘equally well’/‘worse’ than other methods.
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5.1. Normalization

We tested Form-1, Form-2 and the un-normalized form (Form-
0) of RelaxMRMR on all data sets. To determine which
normalization form performs better overall, following Herman
et al. [13], the one-sided paired t-test at 5% significance level was
used to compare Form-1 and Form-2 with the baseline Form-0.
The experiment results of SVM are shown in Table 2 where we use
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Fig. 4. Performance comparison on low-dimensional data sets with SVM (best viewed in color).
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‘þ ’/‘� ’/‘¼ ’ to indicate that Form-0 performs ‘better’/‘worse’/
‘equally well’ compared to the two other forms. Although not
reported, we observed similar results with NB and kNN.

As can be seen from this table, normalization does improve the
performance of RelaxMRMR. In most cases, the unnormalized
form is outperformed by both Form-1 and Form-2. In addition,
using the same testing procedure, the win/tie/loss counts of Form-
2 vs. Form-1 is 16/1/1. Thus clearly, Form-2 consistently performs
better than Form-1. This experimental result verifies the effec-
tiveness of normalizing different MI quantities to a similar scale.
This normalization prevents the algorithm from being largely
biased towards a particular factor. Our finding is in concordance
with previous research. For example, Ref. [3] showed that MRMR
usually outperforms MIFS while JMI often outperforms CIFE. Both
the two winning methods, MRMR and JMI, follow the same nor-
malization strategy that brings every term in the objective into a
similar scale, while MIFS and CIFE employ unnormalized
objectives.

5.2. Comparison with incremental MI-based approaches

We compared the normalized RelaxMRMR (Form-2) with other
existing MI-based approaches that select features in an incre-
mental fashion, including Mutual Information Maximisation
(MIM), also known as the Maximum Relevance criterion (β¼ 0 in
(2)) [5], MIFS with β¼ 0:5 and β¼ 1 in (2) [4], MRMR [5], CIFE [8]
and JMI [6]. The one-sided paired t-test was used to compare
RelaxMRMR against other methods. We used ‘þ ’/‘� ’/‘¼ ’ to indi-
cate that RelaxMRMR performs ‘better’/‘worse’/‘equally well’
compared to the competitor. The result is shown in Table 3 and
summarized in Fig. 2. Additionally, the performance with respect
to the individual data sets is provided in Fig. 3.

5.2.1. Overall effectiveness
In general, compared with existing incremental MI-based

methods, RelaxMRMR performs considerably well. Specifically, in
more than 50% of the cases, the proposed approach yields better
effectiveness than all other approaches, while there is only �10%
of the cases where one of the competitors wins. In the remaining
one-third cases, the performances of RelaxMRMR and the other
approaches are similar. Again, it should be noticed that algorithms
without a good balancing between the relevancy and redundancy
(e.g. MIFS with β¼1 and CIFE) usually provide worse performance
than others. We observed similar results across all the three
classifiers.

5.2.2. Effectiveness with respect to the number of features
As shown in Figs. 4 and 5, on low-dimensional data sets, there

is no significant difference among different feature selection
approaches. Since the number of features in a data set is limited to
a small number, the relationship among these features is relatively
simpler than that of high-dimensional data. As a result, restrictive
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Fig. 5. Performance comparison on high-dimensional data sets with SVM (best viewed in color).
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Fig. 6. Run time (seconds) comparison between RelaxMRMR and other MI-based
algorithms, measured by the average time for selecting one feature from the Gisette
data set.
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assumptions can be applied and simple criteria such as MIM, MIFS
and MRMR may already be sufficiently capable to achieve rea-
sonable performance. As a matter of fact, for these low-
dimensional data sets, it is more important to balance the rela-
tive importance between relevancy and redundancy, rather than
introducing advanced terms such as class-relevant redundancy or
high-order interactions between features.

On the other hand, in high-dimensional data, the underlying
dependency structure between features within the data set is



Fig. 8. Bayesian network representation of the Naive Bayes classifier. Each node
(feature) has only 1 parent, which is C.
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dramatically more complex. In this situation, strong assumptions,
such as pairwise independency, are unrealistic (for example, MIM
tends to perform really badly on data sets with more than a hun-
dred features). In contrast, the proposed RelaxMRMR approach,
which posits the weakest assumptions among all MI-based algo-
rithms, gains significant effectiveness due to the fact that it takes
into account more underlying relationships among features in the
data set.

5.2.3. Effectiveness with respect to the data set size
The effectiveness of RelaxMRMR is not only affected by the

dimensionality of the feature set, but also the data size. Large data
size is crucial for high-dimensional MI estimation. High-
dimensional MI that is estimated based on a small amount of
data is less reliable and may affect the performance of a high-
dimensional MI-based feature selection method. However, even
though the lack of data is a serious challenge, surprisingly it did
not significantly offset the effectiveness of RelaxMRMR on high-
dimensional data sets. In fact, for data sets with less than 100 data
points but with a considerable number of features, i.e., Colon,
Lymphoma, Leukemia and NCI60, in approximately 80% of the
cases RelaxMRMR performs better than its competitors.

5.2.4. Efficiency
We tested the efficiency of RelaxMRMR compared to other

incremental MI-based approaches. As the theoretical analysis in
Section 4.1 has suggested, the complexity of RelaxMRMR is Oðk3
MNÞ compared to Oðk2MNÞ of other MI-based approaches.
RelaxMRMR is thus generally more computationally demanding.
However to our observation, this difference is not practically sig-
nificant for small to medium data sets. To gain a concrete idea of
wall clock processing time, we tested the algorithms on a large
high-dimensional data sets, namely Gisette from the NIPS feature
selection competition [15] of 5000 features and 6000 data points.
The result is shown in Fig. 6.

On this high-dimensional data set, RelaxMRMR is considerably
more expensive. Nevertheless, we expect that the time complexity
should not be a major deterrent to the practicality of RelaxMRMR.
There are two arguments to support this claim. First, there are
many applications where the data collecting time is far more than
the time required for data mining tasks such as feature selection
(e.g., days to months for data collection vs. hours for data mining).
In these cases, it is justifiable to spend significant amounts of time
for data processing and the improved performance brought about
by RelaxMRMR will be worth the effort. Second, commodity multi-
core systems are common nowadays, and it is straightforward to
parallelize RelaxMRMR to harness this parallel processing power.
Towards this end, we tested a parallel version of RelaxMRMR,
where the high-order feature interactions terms are computed in
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Fig. 7. Run time (seconds) comparison between serial and parallel RelaxMRMR,
measured by the average time for selecting one feature from the Gisette data set.
parallel on a 16-core and a 32-core system. The effectiveness of
parallelization can be clearly observed in Fig. 7.

5.3. Comparison with other feature selection methods

In the previous section, we discussed the performance of
RelaxMRMR compared to some well-known incremental MI-based
feature selection methods. To provide a more comprehensive
picture, we also compared RelaxMRMR against some non-
incremental MI-based approaches and non-MI based approaches.
In particular, we chose two global MI-based approaches that for-
mulate feature selection as a global optimization problem, namely
Quadratic Programming Feature Selection (QPFS) [16] and
SpecCMI [9], and two representative non MI-based techniques,
namely spectral feature selection [17] and ReliefF [18]. The result
of these experiments is shown in Table 4. Overall, RelaxMRMR
exhibits strong performance compared to other approaches. It is
noted that while QPFS and SpecCMI use a global optimization
approach, their objective functions are similar to ones employed
by the incremental MRMR and JMI approaches respectively.
None of these methods made use of the second order feature
interaction terms.
6. Related work and discussion

In this section, we highlight the analogy between the MI-based
feature selection problem and the related problem of building
Naive Bayes classifier and its independence-assumptions-relaxed
variants. Naive Bayes classifiers make a strong independence
assumption, that all the features are conditionally independent
given the value of the class C, which is in fact Assumption 3.

The dependency between features and the class variable can be
represented intuitively by means of a Bayesian network, as in
Fig. 8, wherein a node (feature) is probabilistically independent of
all its non-descendants, given its parents. Despite its strong
independence assumption, Naive Bayes classifiers often perform
well in practice. Nevertheless, while it is known that some viola-
tion of the independency assumption do not matter, many others
do affect the performance of Naive Bayes classifiers badly [19]. To
this end, there have been a rich body of work on relaxing the
strong independence assumption for Naive Bayes. Two of the
popular approaches are the Tree-Augmented Naive Bayes (TAN)
[20], and the Averaged One-Dependence Estimators (AODE) [19].

In TAN, the conditional independence assumption is relaxed,
allowing each feature Xm to be independent of all other features,
given C and at most another feature pðXmÞ, called its parent, i.e.,
PðXm jX1;…;Xm�1;CÞ ¼ PðXm jC; pðXmÞÞ. The conditional mutual
information is used to select the parent. The Bayesian network
structure of TAN is illustrated in Fig. 9.

In AODE, instead of learning the parent for each feature, the
classifier is built by aggregating all 1-dependence classifiers. In
each of these 1-dependence classifier, one feature is selected to be
the parent for all other features. Each feature in turn plays the role
of the parent. The structure of these 1-dependence classifiers are



Table 4
Error rate (%) comparison between RelaxMRMR and QPFS, SpecCMI, Spectral and ReliefF.

Dataset RelaxMRMR QPFS SpecCMI Spectral ReliefF

SVM
Wine 6.470.3 5.870.2(�) 7.970.8(¼) 6.070.2(¼) 12.971.7(þ)
Parkinsons 15.470.2 13.670.1(�) 14.870.2(�) 15.370.1(¼) 14.770.2(�)
Ionosphere 12.870.0 15.670.1(þ) 17.770.2(þ) 14.170.0(þ) 18.570.8(þ)
Breast 3.770.0 3.970.0(¼) 4.370.0(þ) 4.670.0(þ) 5.670.5(þ)
Lung 12.871.2 11.971.8(¼) 18.171.5(þ) 19.371.6(þ) 22.871.4(þ)
Segment 10.771.0 10.871.0(¼) 11.171.1(þ) 19.273.9(þ) 15.072.0(þ)
Cardio 13.370.1 12.770.1(�) 13.370.1(¼) 12.470.1(�) 13.270.1(¼)
Steel 37.170.6 37.370.5(¼) 40.170.8(þ) 39.770.5(þ) 40.870.8(þ)
Musk 25.570.3 25.070.3(�) 23.470.3(�) 22.070.1(�) 28.770.6(þ)
Waveform 18.070.5 19.270.9(þ) 19.170.9(þ) 20.770.9(þ) 19.370.9(þ)
Arrhythmia 22.570.0 24.770.1(þ) 24.270.1(þ) 23.370.1(þ) 24.070.3(þ)
Colon 12.670.4 13.270.2(¼) 12.670.1(¼) 13.570.1(¼) 17.570.1(þ)
Landsat 16.070.3 16.570.5(¼) 21.671.4(þ) 16.070.2(¼) 21.071.3(þ)
Spambase 14.070.3 14.170.2(¼) 13.870.3(�) 12.870.1(�) 15.070.3(þ)
Lymphoma 9.070.6 10.170.7(þ) 24.170.9(þ) 14.670.5(þ) 13.171.0(þ)
Semeion 29.971.6 29.473.1(¼) 38.172.4(þ) 40.072.4(þ) 46.572.7(þ)
Leukemia 3.670.1 4.470.0(þ) 5.070.1(þ) 5.070.0(þ) 4.770.0(þ)
NCI60 44.371.9 N/A 52.872.8(þ) 53.175.0(þ) 56.771.8(þ)

Win/Tie/Loss – 5/8/4 12/3/3 11/4/3 16/1/1
Naive Bayes
Wine 14.872.1 16.172.1(þ) 21.174.1(þ) 17.172.3(þ) 21.073.7(þ)
Parkinsons 19.070.4 19.070.2(¼) 21.870.2(þ) 22.570.1(þ) 21.070.2(þ)
Ionosphere 27.570.2 29.770.1(þ) 31.170.2(þ) 29.870.2(þ) 29.570.1(þ)
Breast 26.370.2 30.170.3(þ) 27.870.3(þ) 33.470.2(þ) 28.470.3(þ)
Lung 16.072.7 14.072.4(�) 22.471.8(þ) 25.873.4(þ) 23.572.8(þ)
Segment 27.573.0 27.473.5(¼) 28.773.4(¼) 34.472.9(þ) 31.573.0(¼)
Cardio 17.070.1 17.470.0(¼) 18.670.0(þ) 18.370.0(þ) 20.370.0(þ)
Steel 44.571.2 44.870.9(¼) 45.170.6(¼) 46.970.5(þ) 45.470.6(¼)
Musk 28.770.2 30.770.1(þ) 30.570.2(þ) 29.670.3(þ) 33.870.3(þ)
Waveform 23.771.3 26.372.1(þ) 26.172.2(þ) 27.271.4(þ) 26.272.1(þ)
Arrhythmia 24.070.1 26.770.3(þ) 30.570.1(þ) 27.670.1(þ) 26.670.2(þ)
Colon 10.870.3 11.970.1(þ) 14.370.3(þ) 16.370.8(þ) 35.470.3(þ)
Landsat 27.170.8 29.271.5(þ) 38.274.9(þ) 31.171.4(þ) 40.174.2(þ)
Spambase 10.670.6 9.870.4(�) 12.270.6(þ) 12.970.6(þ) 18.070.6(þ)
Lymphoma 11.571.9 13.571.4(þ) 23.571.0(þ) 18.770.8(þ) 18.271.6(þ)
Semeion 38.071.5 33.572.6(�) 47.572.7(þ) 49.972.8(þ) 59.771.8(þ)
Leukemia 3.270.9 3.970.8(þ) 3.370.9(¼) 16.072.4(þ) 20.571.4(þ)
NCI60 40.272.7 N/A 46.472.6(þ) 50.275.6(þ) 64.872.1(þ)

Win/Tie/Loss – 10/4/3 15/3/0 18/0/0 16/2/0
KNN
Wine 5.970.2 5.870.3(¼) 7.670.8(¼) 6.070.2(¼) 9.871.0(þ)
Parkinsons 8.670.1 9.870.1(þ) 9.570.2(¼) 9.770.2(¼) 9.970.5(¼)
Ionosphere 13.170.1 13.970.0(þ) 14.070.0(þ) 14.070.1(þ) 14.370.0(þ)
Breast 3.570.0 4.370.0(þ) 4.470.0(þ) 4.870.0(þ) 5.670.6(þ)
Lung 13.170.9 13.071.9(¼) 24.171.6(þ) 34.271.9(þ) 25.872.4(þ)
Segment 5.870.7 5.770.7(¼) 6.170.7(¼) 12.373.9(þ) 8.171.4(þ)
Cardio 10.170.2 10.270.2(¼) 9.870.2(�) 9.770.2(¼) 10.070.1(¼)
Steel 33.471.3 33.771.3(¼) 36.071.3(þ) 39.670.9(þ) 35.671.3(þ)
Musk 21.170.4 21.470.4(¼) 18.470.5(�) 24.070.2(þ) 16.770.4(�)
Waveform 23.470.6 24.470.9(¼) 24.370.9(¼) 26.670.9(þ) 24.670.9(þ)
Arrhythmia 25.370.1 29.570.9(þ) 28.970.0(þ) 28.670.1(þ) 27.570.1(þ)
Colon 14.770.0 15.170.1(¼) 16.170.0(þ) 16.470.1(þ) 15.670.1(þ)
Landsat 12.070.7 13.071.0(¼) 18.272.1(þ) 12.670.5(þ) 17.071.7(þ)
Spambase 14.471.3 16.671.7(þ) 14.171.4(¼) 15.671.7(þ) 17.271.3(þ)
Lymphoma 12.470.5 12.570.7(¼) 26.270.7(þ) 15.370.4(þ) 15.271.1(þ)
Semeion 34.372.0 35.273.6(¼) 42.773.2(þ) 46.173.6(þ) 49.673.1(þ)
Leukemia 2.470.0 3.570.0(þ) 5.070.0(þ) 5.370.0(þ) 6.870.0(þ)
NCI60 42.271.4 N/A 55.771.2(þ) 53.672.6(þ) 52.670.4(þ)

Win/Tie/Loss - 6/11/0 11/5/2 15/3/0 15/2/1

‘þ ’/‘� ’/‘¼ ’ indicates that RelaxMRMR performs ‘better’/‘worse’/‘equally well’ compared to the competitor according to the t-test.
N/A denotes QPFS returning a ‘non-convexity’ error.
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illustrated in Fig. 10. In AODE, the joint distribution is factorized as:

PðX;CÞ ¼ 1
n

Xn
i ¼ 1

PðXi;CÞ ∏
n�1

j ¼ 1;ja i
PðXj jC;XiÞ ð30Þ
The AODE classifier has been shown to be as accurate as TAN, but
more computationally efficient in training. Also, since AODE per-
forms model averaging rather than model selection, it has been
shown to have lower variance [19].
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Coming back to the problem of incorporating high-order fea-
ture interaction into MI-based feature selection, we face the
similar problem of how to choose the feature Xj to condition on in
Eq. (25). One possible approach would be to search for the optimal
feature to condition on, similar to the TAN method for building
relaxed Bayes classifiers. Our proposal of RelaxMRMR in this paper
by averaging over all features is inspired by the AODE approach.
7. Conclusion

The range of MI-based feature selection approaches could be
visualized as in Fig. 11. From left to right, the methods make use of
increasingly higher-dimensional MI quantities and thus are able to
detect increasingly higher-order feature dependencies. The asso-
ciated cost is two-fold: (i) increased computational complexity,
and (ii) larger amount of data is needed for accurate training.

From the left end, to our knowledge, there are MI-based meth-
ods that make use of feature dependency quantities up to second-
order, for example the conditional relevancy IðXi;C jXjÞ and joint
mutual information IðfXi;Xjg;CÞ. From the right end, there are a few
methods that make use of the full high-order dependency, i.e., the
high-dimensional MI criterion IðfX1;X2;…;Xmg;CÞ [21–23]. In-
between second-order dependency and full high-order depen-
dency, there is currently no or little research to our knowledge.
Fig. 9. Bayesian network representation of the Tree-Augmented Naive Bayes (TAN)
classifier. Each node (feature) is allowed to have at most another parent apart from C.

Fig. 10. Bayesian network representation of the base classifiers for the AODE
model. Each feature takes turn to be the parent of all other features.

Fig. 11. A continuum of mutual informati
The theoretical framework presented in this paper hopes to
stimulate more research to fill in this gap. We identified the
assumptions needed for decomposing the full joint mutual infor-
mation criterion into lower-dimensional MI quantities. We then
proposed a principled approach for deriving new higher-
dimensional MI based feature selection approaches by relaxing
the identified assumptions. Our work is the first to explore the use
of the three-way feature interaction terms IðXi;Xj jXkÞ. The pro-
posed RelaxMRMR method is demonstrated to be effective via
extensive experimental evaluation.
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