
Online CP Decomposition for Sparse Tensors
Shuo Zhou, Sarah M. Erfani and James Bailey

School of Computing and Information Systems, The University of Melbourne, Australia
{zhous@student., sarah.erfani@, baileyj@}unimelb.edu.au

Abstract—Tensor decomposition techniques such as CAN-
DECOMP/PARAFAC (CP) decomposition have achieved great
success across a range of scientific fields. They have been tradi-
tionally applied to dense, static data. However, today’s datasets
are often highly sparse and dynamically changing over time.
Traditional decomposition methods such as Alternating Least
Squares (ALS) cannot be easily applied to sparse tensors, due to
poor efficiency. Furthermore, existing online tensor decomposi-
tion methods mostly target dense tensors, and thus also encounter
significant scalability issues for sparse data. To address this gap,
we propose a new incremental algorithm for tracking the CP
decompositions of online sparse tensors on-the-fly. Experiments
on nine real-world datasets show that our algorithm is able to
produce quality decompositions of comparable quality to the most
accurate algorithm, ALS, whilst at the same time achieving speed
improvements of up to 250 times and 100 times less memory.

I. INTRODUCTION

Multi-dimensional datasets are common in a wide range of
applications such as chemometrics [1], signal processing [2],
machine learning [3] and data mining [4]. A natural choice for
representing such data is a Tensor, which is a multi-way array
that can preserve the complex relationships among different
dimensions. Tensor Decomposition (TD) is a fundamental
technique for analyzing tensors, and it has been extensively
studied and widely applied for varying tasks [5]. However,
existing TD techniques are usually designed for dense and
static tensors, which makes them less suitable when the data
is highly sparse and dynamically changing over time.

Many real-world tensors are very large and have high
sparsity. Thus, compared to their overall size, the number of
non-zero entries is small. As a consequence, it is difficult to
apply existing TD techniques, since these have often been
designed for dense tensors, and thus have poor efficiency and
scalability when applied to sparse scenarios. Moreover, sparse
tensors are often not static. Instead, they are often changing
over time, as large volumes of new data is generated and added
to the the existing tensor. One typical type of dynamic update
is appending new data along a specific dimension such as time,
with the other dimensions remaining unchanged. An example
is time-evolving social networks, as shown in Figure 1. The
network can be represented by a user × user × time tensor
and each slice at its time dimension is a collection of user
interactions such as tagging a friend in a photo or visiting a
friend’s homepage. Overall, this tensor is highly sparse by its
nature, and rapidly growing as new data (slices) are added.
We refer to such tensors as online sparse tensors.

The research problem we address in this paper is how to ef-
ficiently decompose online sparse tensors. We are particularly

Fig. 1. An example of online sparse tensors

interested in CANDECOMP/PARAFAC (CP) decomposition,
since it is one of the most popular TD techniques having
numerous applications. Specifically, given the existing CP
decomposition of a sparse tensor and a batch of new sparse
data slices, which get added to the tensor’s time mode, we
would like to efficiently obtain the new CP decomposition of
the newly formed tensor without computing it from scratch.

To the best of our knowledge, this is an unresolved question
and existing approaches are not suitable for decomposing
online sparse tensors. Alternating Least Squares (ALS) has
been widely considered as the workhorse for CP decompo-
sition [5] due to its simplicity and ease of implementation.
However, it is inapplicable to decompose an online large
scale sparse tensor, due to its poor efficiency. Even though
distributed and parallel algorithms [6], [7], [8] may be used
to accelerate ALS, the number of non-zeros in the new data
can be too small, so it is wasteful to employ computational
resources to decompose the full tensor from scratch. Lastly,
there are existing approaches that have been designed for
incremental, online decompositions [9], [10], but these are
designed for online dense tensors and their complexities are
usually linear to the size of new data. This significantly limits
their applicability to online sparse tensors which can be very
large, but contain few non-zero elements.

Overall, due to their poor efficiency and scalability, existing
methods are not well suited for decomposing online sparse
tensors. To address this gap, we propose a new algorithm,
OnlineSCP. The contributions of our work are as follows:

• We propose a new algorithm having linear complexity to
the number of non-zeros in the new data, for tracking the
CP decomposition of an online sparse tensor.

• Via experiments on nine real-world datasets, our method
demonstrates high decomposition quality, as well as
significant efficiency improvements in both time and
memory usage.

II. RELATED WORK

In order to decompose a large-scale sparse tensor efficiently,
Bader and Kolda [11] proposed an algorithm based on ALS,
tailoring it to sparse tensors, with support from special data
structures and customized tensor-related operations. Following
the same idea, Smith et al. [12] proposed a new hierarchical
data structure called a Compressed Sparse Fiber (CSF), which
is more memory-efficient and much easier to parallelize. Li
et al. [13] also applied CSF as the storage format for sparse
tensors, while a variant of CSF (vCSF) was used for recording
intermediate results, which leads to more memory-savings
and speedup. In addition, with advances in distributed and
paralleled computing, techniques and tools like MapReduce
[6], [7], [8] and GPUs [14] have also been used to further
speed up ALS for large scale sparse tensors.

In terms of online tensor decomposition, the problem was
first proposed by Sun et al. [15], [16], wherein they refer to
this problem as Incremental Tensor Analysis (ITA). However,
their algorithms are online versions of Tucker decomposition.
Although CP decomposition can be viewed as a special case
of Tucker with super-diagonal core tensor, there is no way
to enforce this constraint can be found. As a result, these
algorithms are not suitable for tracking the CP decompositions
of online sparse tensors.

Limited research can be found for online CP decomposi-
tions. An early exploration was done by Nion and Sidiropoulos
[9], introducing two adaptive algorithms that specifically focus
on CP decomposition: Simultaneous Diagonalization Tracking
(SDT), which incrementally tracks the SVD of the unfolded
tensor; and Recursive Least Squares Tracking (RLST), which
recursively updates the decomposition factors by minimizing
the mean squared error. However, the limitation of this work
is that it can only be applied to third-order tensors. Zhou et
al. [10] proposed a general approach that incrementally tracks
the CP decompositions of online tensors with arbitrary dimen-
sions. However, both [9] and [10] are specifically designed for
dense online tensors, which means that their efficiency quickly
drops to an unacceptable level and may potentially run out of
memory for sparse online tensors having large non-temporal
modes. A more recent technique proposed by Gujral et al.
[17] can operate with both dense and sparse online tensors
via sub-sampling, though multiple repetitions are required for
a stable result.

Lastly, it is worth mentioning studies that address related,
but somewhat different questions to our research problem.
Zhou et al. [18] proposed a dynamic learning schema for
tracking CP decomposition of sparse tensors that are incre-
mentally changing at the element (not slice) level. Shin et
al. [19] also studied dynamic sparse tensors with element-
wise updating and proposed an efficient algorithm for dense-
subtensor detection. Song et al. [20] addressed the tensor
completion problem based on CP decomposition for dynamic
tensors that are growing across all modes (rather than just a
single mode, which will be our focus).

TABLE I
LIST OF SYMBOLS

a, a, A, XXX scalar, vector, matrix, tensor
ai·, a·j the i-th row and j-th column vectors of A
aij the (i, j)-th element of A

A>, A−1, A† transpose, inverse and pseudoinverse of A
||A|| Frobenius norm of A

A(n) the n-the matrix of a sequence of matrices
� Khatri-Rao product
~ Hadamard product
� element-wise division

�N
i=1A

(i) A(N) � · · · �A(i) � · · · �A(1)

~N
i=1A

(i) A(N) ~ · · · ~A(i) ~ · · · ~A(1)

X(n) mode-n unfolding of XXX
J•K CP decomposition operator

R number of components
N order of tensor
In length of the n-th mode of XXX
S, J

∏N−1
n=1 In,

∑N−1
n=1 In

t, ∆t length of time of existing and incoming tensors
|Ω+|, |∆Ω+| number of non-zeros in full and incoming tensors

III. PRELIMINARIES

The notation used through this paper is summarized in Table
I. Basically, given an N th-order tensor XXX ∈ RI1×···×IN , its CP
decomposition is denoted by JA(1), . . . ,A(N)K. The mode-n
unfolding of XXX can be approximated as

X(n) ≈ A(n)(A(N) � · · ·A(n+1) �A(n−1) · · · �A(1))>

= A(n)(
⊙N

i6=n A
(i))>.

The n-th matrix A(n) is updated by ALS as

A(n) ← arg min
A(n)

1

2

∥∥∥X(n) −A(n)(�N
i 6=nA

(i))>
∥∥∥2

=
X(n)(�N

i 6=nA
(i))

~N
i6=1(A(i)>A(i))

.

(1)

The major computational bottleneck is the calculation of
X(n)(�N

i 6=nA
(i)), which is often referred to as matricized ten-

sor times Khatri-Rao products (MTTKRP) [12]. Specifically,
the first term, X(n), is a In ×

∏N
i 6=n Ii flat matrix and the

Khatri-Rao products produce a super tall matrix with size∏N
i 6=n Ii × R, resulting in the linear time complexity w.r.t.

the size of XXX. In addition, in terms of space usage, ALS
is challenged by the so-called intermediate data explosion
problem [8], since it requires allocating a huge amount of
temporal memory space to store intermediate results.

Overall, such high cost makes typical ALS impractical for
large-scale sparse tensors. To address this issue, a number of
methods have been proposed by taking sparsity into consider-
ation and using techniques such as distributed and parallel
computing [7], [8], [12], [13], and GPU acceleration [14].
The most popular method that has been widely recognized as
a gold standard is [11] (summarized in Algorithm 1), which
dramatically reduces the complexity of MTTKRP to be linear
in the number of non-zeros in a sparse tensor.

Algorithm 1: MTTKRP via Sparse Tensor-Vector Products

Input: non-zeros z, indices of non-zeros j(1), . . . , j(N),
loading matrices A(1), . . . ,A(N), mode n

Output: mode-n MTTKRP P(n)

1 for r ← 1 to R do
2 t← z
3 for i← 1 to N do
4 t← t~ a

(i)

j(i)r

5 end
6 p

(n)
·r ← ACCUMARRAY(j(n), t)

7 end

IV. OUR APPROACH

This section introduces our approach, OnlineSCP, an algo-
rithm to track the CP decomposition of a sparse online tensor.
We first discuss the main idea of our algorithm, followed
by key improvements that have been applied and a brief
complexity comparison to state-of-the-art methods.

Formally speaking, the research question we solve is defined
as follows:

Problem Definition. Given (i) an existing CP decompo-
sition JÃ(1), . . . , Ã(N)K of R components that approxi-
mates a sparse tensor X̃XX ∈ RI1×···×IN−1×t at time t, (ii) a
new incoming sparse tensor ∆XXX ∈ RI1×···×IN−1×∆t that
is appended to X̃XX at its last mode and forms a new tensor
XXX ∈ RI1×···×IN−1×(t+∆t), where ∆t � t. The objective
is to find the CP decomposition JA(1), . . . ,A(N)K of XXX.

A. The Principle of OnlineSCP

To address the online SCP (sparse CP decomposition) prob-
lem, our method follows the same alternating update schema
as ALS, such that only one loading matrix is updated at one
time by fixing all others. Specifically, we update the time mode
first, then move on to the rest of the non-temporal modes as

A(N) → A(1) → A(2) · · · → A(N−1).

In order to take advantage of the fact that the tensor is
only growing at its time mode, similar to existing online
works [9], [10], the main assumption of our method is that
the new incoming data, ∆XXX, will not have significant impact
on the existing model, but only contribute to the update
of its corresponding local features. By this, we mean when
new data arrives, the first t rows in the loading matrix of
the temporal mode, A(N), will remain unchanged; while the
loading matrices for non-temporal modes, A(1), . . .A(N−1),
will receive a minor update based on their existing values.

At a high level, as presented in Algorithms 2 and 3, our
algorithm consists of two procedures. Before the start of the
learning phase, it initializes two small helper matrices for stor-
ing historical information by using the initial decomposition
(details in Algorithm 2). After that, in the online learning

Algorithm 2: Initialization Procedure of OnlineSCP

Input: initial decomposition JA(1), . . . ,A(N)K
Output: helper matrices Q and U(N)

1 U(N) ← A(N)>A(N)

2 Q← U(N)

3 for n← 1 to N − 1 do
4 Q← Q~ (A(n)>A(n))
5 end

Algorithm 3: Update Procedure of OnlineSCP

Input: loading matrices A(1), . . . ,A(N−1), helper
matrices Q and U(N), new data ∆XXX

Output: updated loading matrices A(1), . . . ,A(N−1),
updated helper matrices Q and U(N),
coefficient of new data ∆A(N)

1 Q̃← Q

// process temporal mode

2 Q(N) ← Q�U(N)

3 ∆P(N) ← MTTKRP by Algorithm 1
4 ∆A(N) ← ∆P(N)(Q(N))−1

// update helper matrices

5 U(N) ← U(N) + (∆A(N)>∆A(N))
6 Q← Q(N) ~U(N)

// process non-temporal mode

7 for n← 1 to N − 1 do
8 Ã(n) ← A(n)

9 U(n) ← A(n)>A(n)

10 Q(n) ← Q�U(n), Q̃(n) ← Q̃�U(n)

11 ∆P(n) ← MTTKRP by Algorithm 1
12 A(n) ← (A(n)Q̃(n) + ∆P(n))(Q(n))−1

// update helper matrices

13 Q← Q(n) ~ (A(n)>A(n))

14 Q̃← Q̃(n) ~ (Ã(n)
>
A(n))

15 end

phase, the new incoming tensors can be efficiently processed
by an incremental update schema (details in Algorithm 3).

Compared to ALS, the major speedup gained by our ap-
proach comes from several aspects: (i) only a small fraction
of new values are added to the loading matrix of the temporal
mode while the remainder is kept unchanged (as discussed in
§IV-B); (ii) for non-temporal modes, we break down the costly
MTTKRP calculation into historical and new data parts, the
historical one is avoided by using helper matrices and the new
data one is efficiently obtained by Algorithm 1 (as discussed
in §IV-C); (iii) the helper matrices can also be incrementally
updated at a small cost (as discussed in §IV-D).

B. Updating the Temporal Mode

Specifically, the temporal loading matrix, A(N), is a (t +
∆t)×R matrix as [Ã(N); ∆A(N)], where Ã(N) contains the
first t rows of the previous temporal loading matrix. ∆A(N)

can be easily obtained by projecting ∆XXX to the last mode via
other non-temporal loading matrices as

∆A(N) = ∆X(N)((�N−1
i=1 A(i))>)† =

∆X(N)(�N−1
i=1 A(i))

~N−1
i=1 (A(i)>A(i))

.

Let U(N) = A(N)>A(N), Q = ~N
i=1(A(i)>A(i)), and

∆P(N) = ∆X(N)(�N−1
i=1 A(i)), recall that there is no loading

matrices has been updated so far, we can rewrite the above
equation with helper matrices U(N) and Q as

∆A(N) ← ∆P(N)

Q�U(N)
, (2)

where the MTTKRP, ∆P(N), can be efficiently calculated by
Algorithm 1 at linear complexity to the number of non-zeros
in ∆XXX, which we refer to as |∆Ω+|.

C. Updating Non-Temporal Modes

Without loss of generality, here we show how to derive the
incremental update rule for loading matrix at the first mode,
A(1). By using helper matrix Q defined as above, the update
given by the typical ALS is

A(1) ←
X(1)(�N

i=2A
(i))

~N
i=2(A(i)>A(i))

=
X(1)(�N

i=2A
(i))

Q�U(1)
. (3)

Even though the MTTKRP operation, X(1)(�N
i=2A

(i)), can
be accelerated by Algorithm 1 given that XXX is sparse, such
cost is still not accepatable since XXX is potentially a large-scale
tensor and the number of non-zeros in XXX will keep growing
with the increase of time. In fact, by noticing that XXX is an
online tensor that new data is only appended at its last mode,
some patterns can be found in its mode-n unfolding and the
corresponding Khatri-Rao product. As a result, we make use
of such patterns to derive an efficient update rule as follows.

Recall that A(N) has been updated as [Ã(N); ∆A(N)] and
let B(1) =�N−1

i=2 A(i), Eq. (3) can be rewritten as

A(1) ←

[
X̃(1),∆X(1)

]([
Ã(N)

∆A(N)

]
�B(1)

)
Q�U(1)

=
X̃(1)(Ã

(N) �B(1)) + ∆X(1)(∆A(N) �B(1))

Q�U(1)

=
P̃(1) + ∆P(1)

Q�U(1)
.

In this way, the MTTKRP is divided into two parts: the histor-
ical part, P̃(1); and the new data part, ∆P(1). Additionally, as
JÃ(1), . . . , Ã(N)K is the existing decomposition, we have

X̃(1) ≈ Ã
(1)

(�N
i=2Ã

(i))> = Ã
(1)

(Ã(N) � B̃(1))>, (4)

where B̃(1) = �N−1
i=2 Ã(i). Based on this, X̃(1) in P̃(1) can

be replaced by Eq. (4) and the final update rule for A(1) is

A(1) ←
X̃(1)(Ã

(N) �B(1)) + ∆P(1)

Q�U(1)

≈ Ã
(1)

(Ã(N) � B̃(1))>(Ã(N) �B(1)) + ∆P(1)

Q�U(1)

=
Ã

(1)
(Ã(N)

>
Ã(N)) ~ (B̃(1)

>
B(1)) + ∆P(1)

Q�U(1)

= Ã
(1) Q̃�U(1)

Q�U(1)
+

∆P(1)

Q�U(1)
,

(5)

where Q̃ = (Ã(N)
>
Ã(N)) ~ (~N−1

i=1 (Ã(i)
>
A(i))).

Overall, the above update rule significantly reduces the com-
putational cost by limiting the expensive MTTKRP operation
to the new data only. We can interpret such update schema
as follows: the new loading matrix is a weighted combination
of existing loading and a hyper loading learned from the new
data. The weight between them is determined by the ratio of
information contains in the historical data w.r.t. the full data.

D. Incremental Update of Q and Q̃

As mentioned before, by definition we have

Q = (A(1)>A(1)) · · ·~ (A(n)>A(n)) ~ · · · (A(N)>A(N)),

Q̃ = (Ã(1)>A(1)) · · ·~ (Ã(n)>A(n)) ~ · · · (Ã(N)>Ã(N)).

The values in both of them are gradually changing with the
updating of loading matrices. However, the main difference
between the Q values before and after updating A(n) is just the
A(n)>A(n) term. As a result, we do not need to calculate the
Q values from scratch for each update. Instead, we initialize
both Q and Q̃ as ~N

i=1(Ã(i)
>
Ã(i)). After processing the time

mode, Q̃ remains unchanged, while Q can be updated as

Q← Q� (Ã(N)>Ã(N)) ~ (A(N)>A(N)).

Similarly, the updates after the n-th non-temporal mode are

Q← Q� (Ã(N)>Ã(N)) ~ (A(N)>A(N)),

Q̃← Q̃� (Ã(N)>Ã(N)) ~ (Ã(N)>A(N)).

After processing all modes, the final Q is stored and used to
initialize Q and Q̃ for the next batch of new data.

Additionally, since XXX is an online tensor and the length of
the time mode t can be potentially quite large, we choose to
avoid directly computing Ã(N)

>
Ã(N) and A(N)>A(N) by

storing Ã(N)
>
Ã(N) into a small R × R matrix U(N), and

A(N)>A(N) can be easily obtained as

U(N) ← U(N) + (∆A(N)>∆A(N)).

To sum up, our proposed algorithm, OnlineSCP, is consisted
of two procedures: it first initialize two small helper matrices
with the initial tensor and its decomposition (presented in
Algorithm 2), then the new incoming tensors can be effi-
ciently processed by our efficient incremental update schema
(presented in Algorithm 3). A complexity comparison to the
state-of-the-arts can be found in Table II.

TABLE II
COMPLEXITY COMPARISON

Time Memory

OnlineSCP (J + ∆t)R2 + |∆Ω+|NR (J + ∆t)R + |∆Ω+|
ALS (J + t + ∆t)R2 + |Ω+|NR (J + t + ∆t)R + |Ω+|
OnlineCP (J + ∆t)R2 + NRS∆t (J + ∆t)R + SR∆t
SDT (S + ∆t)R2 (J + S + t)R + SR∆t
RLST SR2 (S + J + ∆t)R + SR∆t

10
-2

10
0

10
2

|
+
|/J

0

100

200

300

S
p

e
e

d
u

p

0

0.1

0.2

0.3

0.4

R
e

la
ti
v
e

 M
e

m
o

ry

Speedup

Relative Memory

Fig. 2. The efficiency of OnlineSCP is correlated to the ratio between the
number of non-zeros in data and the overall length of its non-temporal modes

V. EMPIRICAL ANALYSIS

This section compares the performance of our proposed On-
lineSCP algorithm with state-of-the-art techniques, measured
by their effectiveness and efficiency on both time and space.

A. Experiment Specifications

Nine real-world datasets (details in Table III) and four
baselines, including ALS [21], OnlineCP [10], SDT and RLST
[9], have been used in our experiments.

The performance is evaluated by effectiveness and effi-
ciency. In terms of effectiveness, we measure the fitness of
each algorithm as 1 − ||X̂XX−XXX||||XXX|| , where XXX is the original data

and X̂XX is the estimation. For efficiency, both the running time
and memory usage for processing one batch of new data are
measured. Since ALS is the most popular method for CP
decomposition, we report the relative performance of an online
method to ALS over all three metrics.

Given a dataset, the first 50% data along the last mode is
decomposed by ALS and used for initializing all methods.
After that, the second half data is further divided into 100
batches and each of them is sequentially appended to the
existing data. All methods process one batch of data at a time.
After learning a new batch, the updated decompositions of all
methods are used to calculate the fitness, along with the time
and memory consumption for this batch.

For each algorithm-dataset pair, the experiment is conducted
with 4 CPU cores, 32 GB memory and 12-hour maximum
running time. The whole experiment is replicated 5 times
and the final results are averaged over these repetitions. For
reproducibility, the Matlab implementation of our OnlineSCP
algorithm and a more detailed experiment specification can be
found at http://shuo-zhou.info.

B. Results and Discussions

The experimental results are shown in Table IV, V and VI.
Among all online methods, our proposal, OnlineSCP, is the

only method that is able to produce results for all datasets,
given the limited computational resources as stated before. In
contrast, SDT and RLST only manage to process MovieLens
and LastFM, which are two relatively small datasets in terms
of slice size (6K × 6K for MovieLens and 1K × 1K for
LastFM). OnlineCP can process one more dataset compared
to them, NELL-2, which has a slice size of 108M. Ideally
OnlineCP should also work on NIPS dataset as one slice of
NIPS data is slightly smaller than that of NELL-2. However,
OnlineCP has a specifically designed procedure to speedup
calculations on higher-order tensors by costing more memory,
hence it fails on this 4th-order tensor.

We can see that the efficiency of our OnlineSCP method
varies from dataset to dataset. For example, compared to ALS,
the speedups of OnlineSCP on the social network datasets,
Facebook-Links, Facebook-Wall and Youtube are only 3.9,
5.65 and 3.14 times, respectively; while it can improve the
time consumption on NIPS, Enron and NELL-2 by more than
100 times. Similar patterns can be found for memory usage
as well, where for social network data, around one third of
memory used by ALS is needed for OnlineSCP, while for
others the relative memory can be as less as 1% w.r.t. ALS.

One can understand this behavior based on the complexity
analysis. Specifically, the complexity of OnlineSCP, both in
time and space, consists of two parts: 1) one part related to the
overall length of the non-temporal modes, J , 2) and the other
part that depends on the number of non-zeros in the new data,
|∆Ω+|. That is, if J is a relatively large number compared to
|∆Ω+|, then the speedup obtained by the incremental learning
phase will be significantly exploited. In fact, by plotting
|∆Ω+|/J against the speedup (or relative memory) of our
method w.r.t. ALS, we can see a clear correlation between
this ratio and the efficiency as shown in Figure 2. This means
that our method tends to work better for tensors that have
relatively smaller overall length of the non-temporal modes.
However, this does not necessarily means that our method
is not suitable for large-scale sparse online tensors. In fact,
it should be highlighted that in this experiment setting, each
new data batch contains around 0.5% of overall data, so the
maximum speedup can be gained in the MTTKRP calculation is
about 200 times, compared to the ALS algorithm. In practice,
as long as the time used by our algorithm for one new batch
of data is less than the data generation time, one can always
use a smaller batch size to gain even greater efficiency.

VI. CONCLUSIONS

To conclude, in this paper we proposed an efficient algo-
rithm, OnlineSCP, to incrementally track the up-to-date CP
decomposition when a new batch of data is appended to the
time mode of a sparse tensor. The complexity of our algorithm
is only linear to the number of non-zeros in the new data,
which is significantly lower than existing online approaches
that are designed for dense tensors. As evaluated on nine
real-world datasets, our algorithm demonstrated considerable
improvements over state-of-the-art techniques, in terms of
decomposition quality, time and space efficiency.

TABLE III
DETAIL OF REAL-WORLD DATASETS (K: THOUSANDS, M: MILLIONS)

Datasets Description Size nnz* Density Batch Size

Facebook-Links user × user × day 64K × 64K × 886 671K 2× 10−7 4
Facebook-Wall wall owner × poster × day 47K × 47K × 2K 738K 2× 10−7 8
MovieLens user × movie × time 6K × 4K × 1K 1M 4× 10−5 5
LastFM user × artist × time 1K × 1K × 168 3M 2× 10−2 1
NIPS paper × author × year × word 2K × 3K × 17 × 14K 3M 2× 10−6 70
Youtube user × user × day 3M × 3M × 226 18M 8× 10−9 1
Enron sender × receiver × word × day 6K × 6K × 244K × 1K 54M 5× 10−9 6
NELL-2 entity × relation × entity 12K × 9K × 30K 77M 2× 10−5 144
NELL-1 entity × relation × entity 3M × 2M × 25M 144M 9× 10−13 127,476

* number of non-zeros

TABLE IV
MEAN RELATIVE FITNESS TO ALS OVER ALL BATCHES.

THE HIGHER THE BETTER (BOLDFACE MEANS THE BEST RESULTS)

Dataset OnlineCP SDT RLST OnlineSCP

Facebook-Links n/a* n/a n/a 1.00
Facebook-Wall n/a n/a n/a 0.92
MovieLens 1.00 0.31 1.00 1.00
LastFM 0.91 0.22 0.17 0.91
NIPS n/a n/a n/a 0.96
Youtube n/a n/a n/a 1.00
Enron n/a n/a n/a 0.93
NELL-2 0.97 n/a n/a 0.98
NELL-1 n/a n/a n/a 0.84

* n/a means the method is failed since it is not applica-
ble/running out of memory/cannot finish within 12 hours

TABLE V
MEAN RELATIVE SPEEDUP TO ALS OVER ALL BATCHES.

THE HIGHER THE BETTER (BOLDFACE MEANS THE BEST RESULTS)

Dataset OnlineCP SDT RLST OnlineSCP

Facebook-Links n/a n/a n/a 3.90
Facebook-Wall n/a n/a n/a 5.65
MovieLens 2.03 0.05 0.02 42.06
LastFM 70.68 12.41 6.53 74.83
NIPS n/a n/a n/a 102.08
Youtube n/a n/a n/a 3.14
Enron n/a n/a n/a 160.24
NELL-2 30.12 n/a n/a 258.50
NELL-1 n/a n/a n/a 27.81

TABLE VI
MEAN RELATIVE MEMORY USAGE TO ALS OVER ALL BATCHES.
THE LOWER THE BETTER (BOLDFACE MEANS THE BEST RESULTS)

Dataset OnlineCP SDT RLST OnlineSCP

Facebook-Links n/a n/a n/a 0.35
Facebook-Wall n/a n/a n/a 0.32
MovieLens 17.41 60.87 46.38 0.02
LastFM 0.36 1.24 0.94 0.01
NIPS n/a n/a n/a 0.01
Youtube n/a n/a n/a 0.38
Enron n/a n/a n/a 0.04
NELL-2 1.49 n/a n/a 0.01
NELL-1 n/a n/a n/a 0.06

REFERENCES

[1] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable
tensor factorizations for incomplete data,” Chemometrics and Intelligent
Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[2] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan, “Tensor decompositions for signal processing applica-
tions: From two-way to multiway component analysis,” IEEE Signal
Processing Magazine, vol. 32, no. 2, pp. 145–163, 2015.

[3] A. Globerson, G. Chechik, F. Pereira, and N. Tishby, “Euclidean
Embedding of Co-occurrence Data,” JMLR, vol. 8, pp. 2265–2295, 2007.

[4] T. G. Kolda, B. W. Bader, and J. P. Kenny, “Higher-order web link
analysis using multilinear algebra,” in ICDM, 2005.

[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[6] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of
tensors,” in NIPS, 2014.

[7] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2: Billion-
scale tensor decompositions,” in ICDE, 2015.

[8] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
scaling tensor analysis up by 100 times-algorithms and discoveries,” in
SIGKDD, 2012.

[9] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the
parafac decomposition of a third-order tensor,” IEEE Transactions on
Signal Processing, vol. 57, no. 6, pp. 2299–2310, 2009.

[10] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online cp decompositions for higher order tensors,” in SIGKDD, 2016.

[11] B. W. Bader and T. G. Kolda, “Efficient matlab computations with sparse
and factored tensors,” SIAM Journal on Scientific Computing, vol. 30,
no. 1, pp. 205–231, 2007.

[12] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in IPDPS,
2015.

[13] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, “Model-driven sparse cp
decomposition for higher-order tensors,” in IPDPS, 2017.

[14] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A unified opti-
mization approach for sparse tensor operations on gpus,” in CLUSTER,
2017.

[15] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: dynamic
tensor analysis,” in SIGKDD, 2006.

[16] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incremental
tensor analysis: Theory and applications,” ACM TKDD, vol. 2, no. 3,
p. 11, 2008.

[17] E. Gujral, R. Pasricha, and E. E. Papalexakis, “Sambaten: Sampling-
based batch incremental tensor decomposition,” in SDM, 2018.

[18] S. Zhou, S. M. Erfani, and J. Bailey, “Sced: A general framework for
sparse tensor decomposition with constraints and elementwise dynamic
learning,” in ICDM, 2017.

[19] K. Shin, B. Hooi, J. Kim, and C. Faloutsos, “Densealert: Incremental
dense-subtensor detection in tensor streams,” in SIGKDD, 2017.

[20] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect
streaming tensor completion,” in SIGKDD, 2017.

[21] B. W. Bader, T. G. Kolda et al., “Matlab tensor toolbox version 2.6,”
Available online, February 2015

