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Abstract—Tensor decomposition techniques such as CAN-
DECOMP/PARAFAC (CP) decomposition have achieved great
success across a range of scientific fields. They have been
traditionally applied to dense, static data. However, today’s
datasets are often highly sparse and dynamically changing over
time. Traditional decomposition methods such as Alternating
Least Squares (ALS) cannot be easily applied to sparse ten-
sors, due to poor efficiency. Furthermore, existing online tensor
decomposition methods mostly target dense tensors, and thus
also encounter significant scalability issues for sparse data. To
address this gap, we propose a new incremental algorithm
for tracking the CP decompositions of online sparse tensors
on-the-fly. Experiments on nine real-world datasets show that
our algorithm is able to produce quality decompositions of
comparable quality to the most accurate algorithm, ALS, whilst
at the same time achieving speed improvements of up to 250 times
and 100 times less memory. Compared to other state-of-the-art
online decomposition approaches, our method also demonstrates
significant improvements in terms of efficiency and scalability.

I. INTRODUCTION

Multi-dimensional datasets are common in a wide range
of applications such as chemometrics [1], signal processing
[2], machine learning [3] and data mining [4]. A natural
choice for representing such data is a Tensor, which is a
multi-way array that can preserve the complex relationships
among different dimensions. Tensor Decomposition (TD) is a
fundamental technique for analyzing tensors, and it has been
extensively studied and widely applied for varying tasks, in-
cluding subspace learning in computer vision [5], community
detection in time-evolving networks [6], and feature extraction
for spatial-temporal time series [7]. However, existing TD
techniques are usually designed for dense and static tensors,
which makes them less suitable when the data is highly sparse
and dynamically changing over time.

Many real-world tensors are very large and have high
sparsity. Thus, compared to their overall size, the number of
non-zero entries is small. As a consequence, it is difficult to
apply existing TD techniques, since these have often been
designed for dense tensors, and thus have poor efficiency and
scalability when applied to sparse scenarios. Moreover, sparse
tensors are often not static. Instead, they are often changing
over time, as large volumes of new data is generated and
added to the the existing tensor. One typical type of dynamic
update is appending new data along a specific dimension such
as time, with the other dimensions remaining unchanged. An
example of such a scenario is a time-evolving social network,
as shown in Figure 1. The network can be represented by a
user×user×time tensor and each slice at its time dimension
is a collection of user interactions such as tagging a friend in

Fig. 1. An example of online sparse tensors

a photo or visiting a friend’s homepage. Overall, this tensor is
highly sparse by its nature, and rapidly growing as new data
(slices) are added. We refer to such tensors as online sparse
tensors.

The research problem we address in this paper is how to ef-
ficiently decompose online sparse tensors. We are particularly
interested in CANDECOMP/PARAFAC (CP) decomposition,
since it is one of the most popular TD techniques having nu-
merous applications across different domains [8]. Specifically,
given the existing CP decomposition of a sparse tensor and a
batch of new sparse data slices, which get added to the tensor’s
time mode, we would like to efficiently obtain the new CP
decomposition of the newly formed tensor without computing
it from scratch.

To the best of our knowledge, this is an unresolved question
and existing approaches are not suitable for decomposing on-
line sparse tensors. Alternating Least Squares (ALS) has been
widely considered as the workhorse for CP decomposition [8]
due to its simplicity and ease of implementation. However, it is
infeasible for decomposing an online large scale sparse tensor,
due to poor runtime efficiency. In addition, batch methods like
ALS require availability of the full data, while the size of an
online tensor that grows over time is potentially unbounded,
so we may not be able to fit it into the memory. Even though
distributed and parallel algorithms [9], [10], [11] may be used
to accelerate ALS, the number of non-zeros in the new data
can be too small, so it is wasteful to employ computational
resources to decompose the full tensor from scratch. Lastly,
there are existing approaches that have been designed for
incremental, online decompositions [12], [13], but these are
designed for online dense tensors and their complexities are
usually linear to the size of new data. This means that they
require the same amount of time and space for processing
both dense and sparse online tensors, and no optimization
is employed with respect to sparsity. This significantly limits
their applicability to online sparse tensors which can be very



large, but contain few non-zero elements.
Overall, due to their poor efficiency and scalability, existing

methods are not well suited for decomposing online sparse
tensors. To address this gap, we propose a new algorithm,
OnlineSCP. The contributions of our work are as follows:
• We propose a new algorithm having linear complexity to

the number of non-zeros in the new data, for tracking the
CP decomposition of an online sparse tensor.

• Via experiments on nine real-world datasets, our method
demonstrates high decomposition quality, as well as
significant efficiency improvements in both time and
memory usagae. Empirical analysis on real and synthetic
datasets shows that our method is considerably more
scalable than state-of-the-art techniques.

II. RELATED WORK

Tensors are a generalization of matrices and CP decom-
position is a powerful tool for data simplification, feature
extraction and knowledge discovery on tensors. While much
tensor-based work can be found in the literature, few studies
have been conducted on decomposing online sparse tensors.
In this section we review relevant literature in this area.

In order to decompose a large-scale sparse tensor efficiently,
Bader and Kolda [14] proposed an algorithm based on ALS,
tailoring it to sparse tensors, with support from special data
structures and customized tensor-related operations. Following
the same idea, Smith et al. [15] proposed a new hierarchical,
fiber-centric data structure called a Compressed Sparse Fiber
(CSF). Compared to the coordinate (COO) format used in [14],
CSF is more memory-efficient and much easier to parallelize.
Li et al. [16] also applied CSF as the storage format for
sparse tensors, while a variant of CSF (vCSF) was used for
recording intermediate results, which leads to more memory-
savings and speedup. In addition, with advances in distributed
computing, techniques like MapReduce have also been used to
further speed up ALS for large scale sparse tensors [9], [10],
[11]. Inspired by the success of parallel tensor decomposition
algorithms, GPUs have been applied for accelerating sparse
tensor computations [17].

In terms of online tensor decomposition, the problem was
first proposed by Sun et al. [18], [19], wherein they refer
to this problem as Incremental Tensor Analysis (ITA). Three
algorithms have been proposed in their work: dynamic tensor
analysis (DTA), stream tensor analysis (STA) and window-
based tensor analysis (WTA), using techniques such as incre-
mental update, approximation and sliding windows. However,
these techniques are online versions of Tucker decomposition.
Although CP decomposition can be viewed as a special case
of Tucker with super-diagonal core tensor, none of the above
methods provides a way to enforce this constraint. As a
result, these algorithms are not suitable for tracking the CP
decompositions of online sparse tensors.

Limited research can be found for online CP decomposi-
tions. An early exploration was done by Nion and Sidiropoulos
[12], introducing two adaptive algorithms that specifically
focus on CP decomposition: Simultaneous Diagonalization

TABLE I
LIST OF SYMBOLS

a, a, A, XXX scalar, vector, matrix, tensor
ai·, a·j the i-th row and j-th column vectors of A
aij the (i, j)-th element of A

A>, A−1, A† transpose, inverse and pseudoinverse of A
||A|| Frobenius norm of A

A(n) the n-the matrix of a sequence of matrices
� Khatri-Rao product
~ Hadamard product
� element-wise division

�N
i=1A

(i) A(N) � · · · �A(i) � · · · �A(1)

~N
i=1A

(i) A(N) ~ · · · ~A(i) ~ · · · ~A(1)

X(n) mode-n unfolding of XXX
J•K CP decomposition operator

R number of components
N order of tensor
In length of the n-th mode of XXX
S, J

∏N−1
n=1 In,

∑N−1
n=1 In

t, ∆t length of time of existing and incoming tensors
|Ω+|, |∆Ω+| number of non-zeros in full and incoming tensors

Tracking (SDT), which incrementally tracks the SVD of
the unfolded tensor; and Recursive Least Squares Tracking
(RLST), which recursively updates the decomposition factors
by minimizing the mean squared error. However, the limitation
of this work is that it can only be applied to third-order
tensors. Zhou et al. [13] proposed a general approach that
incrementally tracks the CP decompositions of online tensors
with arbitrary dimensions. However, both [12] and [13] are
specifically designed for dense online tensors, which means
that their efficiency quickly drops to an unacceptable level and
may potentially run out of memory for sparse online tensors
having large non-temporal modes. A more recent technique
proposed by Gujral et al. [20] can operate with both dense
and sparse online tensors via sub-sampling, though multiple
repetitions are required for a stable result.

Lastly, it is worth mentioning studies that address related,
but somewhat different questions to our research problem.
Zhou et al. [21] proposed a dynamic learning schema for
tracking CP decomposition of sparse tensors that are incre-
mentally changing at the element (not slice) level. Shin et
al. [22] also studied dynamic sparse tensors with element-
wise updating and proposed an efficient algorithm for dense-
subtensor detection. Song et al. [23] addressed the tensor
completion problem based on CP decomposition for dynamic
tensors that are growing across all modes (rather than just a
single mode, which will be our focus).

III. PRELIMINARIES

This section introduces tensor notations (summarized in Ta-
ble I) and some basic operations that we are using throughout
this work. In addition, a brief introduction to CP decomposi-
tion is provided.

A. Notation and Tensor Algebra

A tensor is a multi-way array, which is a generalization of
vector and matrix. In this paper, we denote vectors by boldface



lowercase letters, e.g., a, matrices by boldface uppercase
letters, e.g., A, and tensors by boldface Euler script letters,
e.g., XXX. The order of a tensor, also known as the number of
ways or modes, is its number of dimensions. For example,
vectors and matrices are 1st-order and 2nd-order tensors,
respectively; and a tensor XXX ∈ RI1×···×IN is an N th-order
one consisting of real numbers and the cardinality of its i-th
order, i ∈ [1, N ] is Ii. We refer to tensors with more than 3
modes as higher-order ones.

Let A>, A−1, A† and
∥∥A∥∥ denote the transpose, inverse,

Moore-Penrose pseudoinverse and Frobenius norm of A, re-
spectively. Additionally, for indexing matrix A, we denote its
(i, j)-th element by aij , i-th row vector by ai·, and j-th column
vector by a·j .

The Khatri-Rao product [8] of two matrices A ∈ RI×K

and B ∈ RJ×K is denoted by A�B, the output of which is
a IJ ×K matrix defined as

A�B =


a11b·1 a12b·2 · · · a1Kb·K
a21b·1 a22b·2 · · · a2Kb·K

...
...

. . .
...

aI1b·1 aI2b·2 · · · aIKb·K

 .
The Hadamard product of two equal size matrices A and

B is denoted by A~B, which is their element-wise product.
Similarly, we denote their element-wise division by A�B.

Furthermore, let A(1),A(2), . . . ,A(N) represent a list of
N matrices. The Khatri-Rao product series A(N) � · · · �
A(i)� · · ·�A(1) is denoted by �N

i=1A
(i) and the Hadamard

product sequence A(N) ~ · · ·~A(i) ~ · · ·~A(1) is denoted
by ~N

i=1A
(i).

Tensor unfolding, or matricization, is a procedure that
transforms a tensor into a matrix [8]. Generally speaking,
given an N th-order tensor XXX ∈ RI1×···×IN , its mode-n
unfolding X(n) ∈ RIn×

∏N
i6=n Ii can be obtained by permuting

the dimensions of XXX as [In, I1, . . . , In−1, In+1, . . . , IN ] and
then reshaping the permuted tensor into a matrix of size
In ×

∏N
i 6=n Ii [13].

B. CANDECOMP/PARAFAC Decomposition

CP decomposition is one of the most popular techniques
for analyzing tensors. Basically, given an N th-order ten-
sor XXX ∈ RI1×···×IN , its CP decomposition is denoted by
JA(1), . . . ,A(N)K, which is consisted of N loading matrices.
Each loading matrix, A(n), n ∈ [1, N ], is of size In×R, where
R is usually a very small number compared to In. R is called
the rank of XXX, indicating the number of latent factors used to
approximate this tensor. By using these loading matrices, the
mode-n unfolding of XXX can be approximated as

X(n) ≈ A(n)(A(N) � · · ·A(n+1) �A(n−1) · · · �A(1))>

= A(n)(
⊙N

i 6=n A
(i))>.

(1)

It means that to find the CP decomposition of XXX, we need
to solve an optimization problem that minimizes the error

between XXX and JA(1), . . . ,A(N)K. One commonly used loss
function is

L =
1

2

∥∥∥X(n) −A(n)(�N
i 6=nA

(i))>
∥∥∥2

.

However, it is very difficult to minimize L jointly over
A(1), . . . ,A(N), since L is not convex w.r.t. A(1), . . . ,A(N).
To address this issue, a widely applied approach is ALS. The
main idea is to divide the above optimization problem into N
sub-problems and the n-th one, n ∈ [1, N ] fixes all variables
but A(n), and then minimizes the convex objective L w.r.t.
A(n), that is

A(n) ← arg min
A(n)

1

2

∥∥∥X(n) −A(n)(�N
i 6=nA

(i))>
∥∥∥2

= X(n)((�N
i 6=nA

(i))>)†

=
X(n)(�N

i 6=nA
(i))

~N
i6=1(A(i)>A(i))

.

(2)

ALS has gained great popularity due to its simplicity and
ease of implementation, but its efficiency has been criticized.
The major computational bottleneck is the calculation of
X(n)(�N

i 6=nA
(i)), which is often referred to as matricized

tensor times Khatri-Rao products (MTTKRP) [15]. Specifi-
cally, the first term, X(n), is a In ×

∏N
i6=n Ii flat matrix

and the Khatri-Rao products produce a super tall matrix with
size

∏N
i 6=n Ii × R, resulting in an overall time complexity as

O(R
∏N

i=1 Ii), which is linear to the size of XXX. In addition,
in terms of space usage, ALS is challenged by the so-called
intermediate data explosion problem [11], since it requires
allocating a huge amount of temporal memory space to store
the matricized tensor and the Khatri-Rao products.

Overall, both the time and space complexities of naive
MTTKRP calculation are linear to the size of the input tensor.
Such high cost makes typical ALS impractical for large-scale
tensors. More importantly, for a sparse tensor, compared to its
size, the amount of valuable information, i.e., the number of
non-zeros, is much reduced. As a result, it is not desirable or
feasible to explicitly calculate MTTKRP for sparse tensors.

To address the efficiency issue and improve the performance
of MTTKRP for sparse tensors, a number of methods have
been proposed by taking sparsity into consideration and using
techniques such as distributed and parallel computing [10],
[11], [15], [16], and GPU acceleration [17]. The most popular
method that has been widely recognized as a gold standard is
[14] (summarized in Algorithm 1), which dramatically reduces
the complexity of MTTKRP to be linear in the number of non-
zeros in a sparse tensor.

IV. OUR APPROACH

This section introduces our approach, OnlineSCP, an al-
gorithm to track the CP decomposition of a sparse online
tensor. We first discuss the main idea of our algorithm,
followed by key improvements that have been applied and a
brief complexity analysis and a comparison to state-of-the-art
methods.



Algorithm 1: MTTKRP via Sparse Tensor-Vector Products

Input: non-zeros z, indices of non-zeros j(1), . . . , j(N),
loading matrices A(1), . . . ,A(N), mode n

Output: mode-n MTTKRP P(n)

1 for r ← 1 to R do
2 t← z
3 for i← 1 to N do
4 t← t~ a

(i)

j(i)r

5 end
6 p

(n)
·r ← ACCUMARRAY(j(n), t)

7 end

Formally speaking, the research question we solve is defined
as follows:

Problem Definition. Given (i) an existing CP decompo-
sition JÃ(1), . . . , Ã(N)K of R components that approxi-
mates a sparse tensor X̃XX ∈ RI1×···×IN−1×t at time t, (ii) a
new incoming sparse tensor ∆XXX ∈ RI1×···×IN−1×∆t that
is appended to X̃XX at its last mode and forms a new tensor
XXX ∈ RI1×···×IN−1×(t+∆t), where ∆t � t. The objective
is to find the CP decomposition JA(1), . . . ,A(N)K of XXX.

A. The Principle of OnlineSCP

To address the online SCP (sparse CP decomposition) prob-
lem, our method follows the same alternating update schema
as ALS, such that only one loading matrix is updated at one
time by fixing all others. Specifically, we update the time mode
first, then move on to the rest of the non-temporal modes as

A(N) → A(1) → A(2) · · · → A(N−1).

In order to take advantage of the fact that the tensor is
only growing at its time mode, similar to existing online
works [12], [13], the main assumption of our method is that
the new incoming data, ∆XXX, will not have significant impact
on the existing model, but only contribute to the update
of its corresponding local features. By this, we mean when
new data arrives, the first t rows in the loading matrix of
the temporal mode, A(N), will remain unchanged; while the
loading matrices for non-temporal modes, A(1), . . .A(N−1),
will receive a minor update based on their existing values.

At a high level, as presented in Algorithms 2 and 3, our
algorithm consists of two procedures. Before the start of
the learning phase, it initializes two small helper matrices
for storing historical information by using the initial tensor
and its decomposition (details in Algorithm 2). After that, in
the online learning phase, the new incoming tensors can be
efficiently processed by an incremental update schema (details
in Algorithm 3).

Compared to ALS, the major speedup gained by our ap-
proach comes from several aspects: (i) only a small fraction
of new values are added to the loading matrix of the temporal
mode while the remainder is kept unchanged (as discussed in

Algorithm 2: Initialization Procedure of OnlineSCP

Input: initial data XXX0, its decomposition
JA(1), . . . ,A(N)K

Output: helper matrices Q and U(N)

1 U(N) ← A(N)>A(N)

2 Q← U(N)

3 for n← 1 to N − 1 do
4 Q← Q~ (A(n)>A(n))
5 end

Algorithm 3: Update Procedure of OnlineSCP

Input: loading matrices A(1), . . . ,A(N−1), helper
matrices Q and U(N), new data ∆XXX

Output: updated loading matrices A(1), . . . ,A(N−1),
updated helper matrices Q and U(N),
coefficient of new data ∆A(N)

1 Q̃← Q

// process temporal mode

2 Q(N) ← Q�U(N)

3 ∆P(N) ← MTTKRP by Algorithm 1
4 ∆A(N) ← ∆P(N)(Q(N))−1

// update helper matrices

5 U(N) ← U(N) + (∆A(N)>∆A(N))
6 Q← Q(N) ~U(N)

// process non-temporal mode

7 for n← 1 to N − 1 do
8 Ã(n) ← A(n)

9 U(n) ← A(n)>A(n)

10 Q(n) ← Q�U(n), Q̃(n) ← Q̃�U(n)

11 ∆P(n) ← MTTKRP by Algorithm 1
12 A(n) ← (A(n)Q̃(n) + ∆P(n))(Q(n))−1

// update helper matrices

13 Q← Q(n) ~ (A(n)>A(n))

14 Q̃← Q̃(n) ~ (Ã(n)
>
A(n))

15 end

§IV-B); (ii) for non-temporal modes, we break down the costly
MTTKRP calculation into historical and new data parts, the
historical one is avoided by using helper matrices and the new
data one is efficiently obtained by Algorithm 1 (as discussed
in §IV-C); (iii) the helper matrices can also be incrementally
updated at a small cost (as discussed in §IV-D).

B. Updating the Temporal Mode

Specifically, the temporal loading matrix, A(N), is a (t +
∆t)×R matrix as

A(N) ←
[
Ã(N)

∆A(N)

]
,



where its first t rows is Ã(N) ∈ Rt×R and ∆A(N) is a small
matrix of size ∆t × R. ∆A(N) can be easily obtained by
projecting ∆XXX to the last mode via other non-temporal loading
matrices as

∆A(N) = ∆X(N)((�N−1
i=1 A(i))>)†

=
∆X(N)(�N−1

i=1 A(i))

~N−1
i=1 (A(i)>A(i))

.

Let U(N) = A(N)>A(N), Q = ~N
i=1(A(i)>A(i)), and

∆P(N) = ∆X(N)(�N−1
i=1 A(i)), recall that there is no loading

matrices has been updated so far, we can rewrite the above
equation with helper matrices U(N) and Q as

∆A(N) ← ∆P(N)

Q�U(N)
, (3)

where the MTTKRP, ∆P(N), can be efficiently calculated by
Algorithm 1 at linear complexity to the number of non-zeros
in ∆XXX, which we refer to as |∆Ω+|.

C. Updating Non-Temporal Modes

Without loss of generality, here we show how to derive the
incremental update rule for loading matrix at the first mode,
A(1). By using helper matrix Q defined as above, the update
given by the typical ALS is

A(1) ←
X(1)(�N

i=2A
(i))

~N
i=2(A(i)>A(i))

=
X(1)(�N

i=2A
(i))

Q�U(1)
. (4)

Even though the MTTKRP operation, X(1)(�N
i=2A

(i)), can
be accelerated by Algorithm 1 given that XXX is sparse, such
cost is still not accepatable since XXX is potentially a large-scale
tensor and the number of non-zeros in XXX will keep growing
with the increase of time. As a matter of fact, by noticing that
XXX is an online tensor that new data is only appended at its
last mode, there are some patterns can be found in its mode-
n unfolding and the corresponding Khatri-Rao product. As a
result, we make use of such patterns to derive an efficient
update rule as follows.

Recall that A(N) has been updated as [Ã(N); ∆A(N)] and
let B(1) =�N−1

i=2 A(i), Eq. (4) can be rewritten as

A(1) ←

[
X̃(1),∆X(1)

]([
Ã(N)

∆A(N)

]
�B(1)

)
Q�U(1)

=
X̃(1)(Ã

(N) �B(1)) + ∆X(1)(∆A(N) �B(1))

Q�U(1)

=
P̃(1) + ∆P(1)

Q�U(1)
.

In this way, the MTTKRP is divided into two parts: the one
that is related to the historical data, P̃(1); and the other that
is only depending on the new incoming data, ∆P(1). In fact,
since JÃ(1), . . . , Ã(N)K is the existing decomposition of X̃XX,
we have

X̃(1) ≈ Ã
(1)

(�N
i=2Ã

(i))> = Ã
(1)

(Ã(N) � B̃(1))>, (5)

where B̃(1) = �N−1
i=2 Ã(i). Based on this, X̃(1) in P̃(1) can

be replaced by Eq. (5) and the final update rule for A(1) is

A(1) ←
X̃(1)(Ã

(N) �B(1)) + ∆P(1)

Q�U(1)

≈ Ã
(1)

(Ã(N) � B̃(1))>(Ã(N) �B(1)) + ∆P(1)

Q�U(1)

=
Ã

(1)
(Ã(N)

>
Ã(N)) ~ (B̃(1)

>
B(1)) + ∆P(1)

Q�U(1)

= Ã
(1) Q̃�U(1)

Q�U(1)
+

∆P(1)

Q�U(1)
,

(6)

where Q̃ = (Ã(N)
>
Ã(N)) ~ (~N−1

i=1 (Ã(i)
>
A(i))).

Overall, the above update rule significantly reduces the com-
putational cost by limiting the expensive MTTKRP operation
to the new data only. We can interpret such update schema
as follows: the new loading matrix is a weighted combination
of existing loading and a hyper loading learned from the new
data. The weight between them is determined by the ratio of
information contains in the historical data w.r.t. the full data.

D. Incremental Update of Q and Q̃

As mentioned before, by definition we have

Q = (A(1)>A(1)) · · ·~ (A(n)>A(n)) ~ · · · (A(N)>A(N)),

Q̃ = (Ã(1)>A(1)) · · ·~ (Ã(n)>A(n)) ~ · · · (Ã(N)>Ã(N)).

Their values are gradually changing with the updating of
loading matrices. However, the main difference between the Q

values before and after updating A(n) is just the A(n)>A(n)

term. As a result, we do not need to calculate the Q values
from scratch for each update. Instead, we initialize both Q

and Q̃ as ~N
i=1(Ã(i)

>
Ã(i)). After processing the time mode,

Q̃ remains unchanged, while Q can be updated as

Q← Q� (Ã(N)>Ã(N)) ~ (A(N)>A(N)).

Similarly, the update after processing the n-th non-temporal
mode is

Q← Q� (Ã(N)>Ã(N)) ~ (A(N)>A(N)),

Q̃← Q̃� (Ã(N)>Ã(N)) ~ (Ã(N)>A(N)).

After processing all modes, the final Q is stored and used to
initialize Q and Q̃ for the next batch of new data.

Additionally, since XXX is an online tensor and the length of
the time mode t can be potentially quite large, we choose to
avoid directly computing Ã(N)

>
Ã(N) and A(N)>A(N) by

storing Ã(N)
>
Ã(N) into a small R × R matrix U(N), and

A(N)>A(N) can be easily obtained as

U(N) ← U(N) + (∆A(N)>∆A(N)).



TABLE II
COMPLEXITY COMPARISON BETWEEN ONLINESCP AND EXISTING METHODS.

Time Memory Source

OnlineSCP O((J + ∆t)R2 + |∆Ω+|NR) O((J + ∆t)R + |∆Ω+|)
ALS O((J + t + ∆t)R2 + |Ω+|NR) O((J + t + ∆t)R + |Ω+|) [24]
OnlineCP O((J + ∆t)R2 + NRS∆t) O((J + ∆t)R + SR∆t) [13]
SDT O((S + ∆t)R2) O((J + S + t)R + SR∆t) [12]
RLST O(SR2) O((S + J + ∆t)R + SR∆t) [12]

TABLE III
DETAIL OF REAL-WORLD DATASETS

(K: THOUSANDS, M: MILLIONS)

Datasets Description Size nnz* Density Batch Size Source

Facebook-Links user × user × day 64K × 64K × 886 671K 2× 10−7 4 [25]
Facebook-Wall wall owner × poster × day 47K × 47K × 2K 738K 2× 10−7 8 [25]
MovieLens user × movie × time 6K × 4K × 1K 1M 4× 10−5 5 [26]
LastFM user × artist × time 1K × 1K × 168 3M 2× 10−2 1 [27]
NIPS paper × author × year × word 2K × 3K × 17 × 14K 3M 2× 10−6 70 [3]
Youtube user × user × day 3M × 3M × 226 18M 8× 10−9 1 [28]
Enron sender × receiver × word × day 6K × 6K × 244K × 1K 54M 5× 10−9 6 [29]
NELL-2 entity × relation × entity 12K × 9K × 30K 77M 2× 10−5 144 [30]
NELL-1 entity × relation × entity 3M × 2M × 25M 144M 9× 10−13 127,476 [30]

* number of non-zeros

E. Complexity Analysis

Let R be the decomposition rank, N be the order of tensor,
t be the time length of existing data, ∆t be the time length
of new data, |Ω+| be the number of non-zeros in the full
data, |∆Ω+| be the number of non-zeros in the new tensor,
S =

∏N−1
i=1 Ii, and J =

∑N−1
i=1 Ii, where Ii is the length of

the i-th mode.
To process a new chunk of data, the overall time com-

plexity for our algorithm is dominated by O((J + ∆t)R2 +
|∆Ω+|NR), where (J + ∆t)R2 is corresponding to the
(A(n)>A(n))-like calculations (line 5, 9, 13, 14 in Algorithm
3) and the actual update for loading matrices (line 4, 12 in
Algorithm 3); |∆Ω+|NR is cost for MTTKRP operation (line
3, 11 in Algorithm 3).

In terms of space consumption, since the update of the time
mode is independent to historical data, our method only needs
to store the loading matrices for non-temporal modes and two
R×R helper matrices in memory. In addition, extra O(|∆Ω+|)
memory needs to be used for the MTTKRP calculation. As a
result, the overall space cost is O((J + ∆t)R+ |∆Ω+|).

We summarize the complexity of OnlineSCP and make a
comparison to state-of-the-art methods in Table II. It should
be noted that the complexitie of SDT and RLST are measured
based on the exponential window strategy [12], which con-
siders all updated-to-date data in a single window assessing
the importance of data slices at different timestamps using a
forgetting factor λ. In addition, as they only work on 3rd-order
tensors, when other methods are compared to them, N should
be set to 3. Another remark is that the complexity of ALS is
based on one iteration only, in reality it usually takes a few
iterations until convergence.

V. EMPIRICAL ANALYSIS

In this section, we compare the performance of our proposed
OnlineSCP algorithm with state-of-the-art techniques. We first
examine their effectiveness and efficiency, in terms of both
time and space, on nine real-world datasets. In addition, we
make further investigation on the scalability of our method
and baselines using several synthetic datasets.

A. Experiment Specifications

1) Datasets: Nine real-world datasets of varying character-
istics have been used in our experiments and their detail can
be found in Table III. Facebook [25] and Youtube [28] are
time-evolving social network data obtained from KONECT
[31]. Both MovieLens [26] and LastFM [27] contain user
rating data. The ratings in MovieLens are explicit, scaling
from 1 to 5, whereas LastFM contains implicit ratings that are
represented by the number of times a user listened a particular
artist’s songs for a given time interval. The rest of the datasets
are publicly available on FROSTT [32]. NELL-1 and NELL-2
come from Never Ending Language Learning (NELL) project
[30] and represent (noun, verb, noun) triples. NIPS [3] is a
paper authorship network data and Enron [29] records email
transactions within senior managers in Enron. Both of them
are 4th-order tensors.

2) Baselines: In our experiments, four baselines have been
selected for performance comparison.

(i) ALS [8]: an implementation of the ALS algorithm for
sparse tensors provided by Tensor Toolbox [24]. Since it is
a batch method, to make it work with online tensors, the CP
decomposition of the last time step is used as the initialization
for decomposing the current tensor.



(ii) OnlineCP [13]: an incremental ALS-like algorithm,
which can track the decompositions of both 3rd-order and
higher-order online tensors.

(iii) SDT [12]: an adaptive algorithm based on incrementally
tracking the SVD of the unfolded tensor on the time mode.

(iv) RLST: another online approach proposed in [12]. In-
stead of tracking the SVD, recursive updates are performed to
minimize the mean squared error on new data.

3) Evaluation Metrics: The performance of each method is
demonstrated by its effectiveness and efficiency.

In terms of effectiveness, we measure the fitness of each
algorithm as

fitness ,

1−

∥∥∥X̂XX−XXX

∥∥∥∥∥XXX∥∥
 ,

where XXX is the original data, X̂XX is the estimation and
∥∥•∥∥

denotes the Frobenius norm.
In order to validate the efficiency performance of an algo-

rithm, both the running time and memory usage for processing
one batch of new data are measured.

Since ALS is the most popular method for CP decompo-
sition and in order to better interpret the results, we report
the relative performance of an online method to ALS over all
three metrics as

relative fitness ,
fitness(baseline)

fitness(ALS)
,

speedup ,
time(ALS)

time(baseline)
,

relative memory ,
memory(baseline)

memory(ALS)
.

4) Experimental Setup: Given a dataset, the first 50%
data along the last mode is decomposed by ALS and this
corresponding CP decomposition is used for initializing all
methods. After that, the second half is further divided into
100 batches and each of them is sequentially appended to the
existing data. All methods process one batch of data at a time.
After learning a new batch, the updated decompositions of all
methods are used to calculate the fitness, along with the time
and memory consumption for this batch.

With respect to parameter settings, the decomposition rank
R is fixed to 5 for all datasets, due to the poor efficiency
of baselines. For the ALS algorithm used in the initialization
stage, the tolerance ε is set to 1 × 10−8 and the maximum
number of iterations is set to 100, to ensure quality starting
points for all methods. In the online learning phase, ε of ALS
is altered to 1 × 10−4 and we enforce it to run one iteration
at one timestamp, for a fair comparison to other methods. For
SDT and RLST, exponential window strategy is used with a
forgetting factor λ = 1, as all other methods treat all data
as equally important. In addition, it should be noted that the
original implementation of SDT and RLST can only handle
one slice of data at a time, so we modified them by executing
a for loop to process a batch. Lastly, no parameters need to
be tuned for our method and OnlineCP.

The experiments are conducted on Spartan [33], a research
platform with multiple computing nodes and each of them
has 12 CPU cores and 251 GB RAM. Due to the fact that
Spartan is a highly utilized system, we limit the computing
resources for each algorithm-dataset pair as 4 CPU cores, 32
GB memory and 12-hour maximum running time. The whole
experiment is replicated 5 times with Matlab and the final
results are averaged over these repetitions.

B. Experimental Results

The experimental results on real-world datasets can be found
in Table IV, V and VI.

Among all online methods, our proposal, OnlineSCP, is the
only method that is able to produce results for all datasets,
given the limited computational resources as stated before. In
contrast, SDT and RLST only manage to process MovieLens
and LastFM, which are two relatively small datasets in terms
of slice size (6K × 6K for MovieLens and 1K × 1K for
LastFM). OnlineCP can process one more dataset compared
to them, NELL-2, which has a slice size of 108M. Ideally
OnlineCP should also work on NIPS dataset as one slice of
NIPS data is slightly smaller than that of NELL-2. However,
OnlineCP has a specifically designed procedure to speedup
calculations on higher-order tensors by costing more memory,
hence it fails on this 4th-order tensor.

1) Results on Effectiveness: Compared to existing online
methods, our algorithm is able to produce the highest quality
decompositions on-the-fly. The fitness of OnlineSCP is com-
parable to ALS being more than 90% as good in most cases.
However, the performance of SDT and RLST is considerably
worse on this criteria. Specifically, compared to ALS, the
relative fitness of SDT is under one third for both MovieLens
and LastFM, and RLST can only reach 17% relative fitness on
LastFM. The relative fitness of OnlineCP is close to ours on
MovieLens and LastFM, but 1% lower on NELL-2 dataset.

2) Results on Time Efficiency: Lack of optimization on
sparsity is the main contributing factor to the poor time ef-
ficiency of existing online methods on the MovieLens dataset,
e.g., OnlineCP only speeds up ALS by 2 times, and SDT and
RLST are much slower than ALS, while our method signifi-
cantly reduces the time consumption by more than 40 times.
Similarly, huge time efficiency difference can be observed
between OnlineCP and our approach on NELL-2 dataset,
where our method is more than 250 times faster than ALS,
whilst the speedup of OnlineCP is only about 30 times. On
LastFM dataset, SDT and RLST perform slightly better with
around 12 and 7 times faster than ALS, respectively. However,
they have been significantly outperformed by OnlineCP (x70
speedup) and our approach (x75 speedup).

3) Results on Space Efficiency: As shown in the complexity
comparison (Table II, all existing online methods have a space
complexity that is linear to the slice size, which can be much
greater than necessary if the data is highly sparse. In fact, this
is the main reason why they fail on most of the real-world
datasets given the time and memory limits. Sometimes their
memory usages can be even worse than ALS, which is a batch



TABLE IV
MEAN RELATIVE FITNESS TO ALS OVER ALL BATCHES.

THE HIGHER THE BETTER (BOLDFACE MEANS THE BEST RESULTS)

Dataset OnlineCP SDT RLST OnlineSCP

Facebook-Links n/a* n/a n/a 1.00
Facebook-Wall n/a n/a n/a 0.92
MovieLens 1.00 0.31 1.00 1.00
LastFM 0.91 0.22 0.17 0.91
NIPS n/a n/a n/a 0.96
Youtube n/a n/a n/a 1.00
Enron n/a n/a n/a 0.93
NELL-2 0.97 n/a n/a 0.98
NELL-1 n/a n/a n/a 0.84

* n/a means the method is failed since it is not applica-
ble/running out of memory/cannot finish within 12 hours

TABLE V
MEAN RELATIVE SPEEDUP TO ALS OVER ALL BATCHES.

THE HIGHER THE BETTER (BOLDFACE MEANS THE BEST RESULTS)

Dataset OnlineCP SDT RLST OnlineSCP

Facebook-Links n/a n/a n/a 3.90
Facebook-Wall n/a n/a n/a 5.65
MovieLens 2.03 0.05 0.02 42.06
LastFM 70.68 12.41 6.53 74.83
NIPS n/a n/a n/a 102.08
Youtube n/a n/a n/a 3.14
Enron n/a n/a n/a 160.24
NELL-2 30.12 n/a n/a 258.50
NELL-1 n/a n/a n/a 27.81

method that stores all information with sparse indexing. For
example, on MovieLens, the space usage of OnlineCP, SDT
and RLST is 17, 60 and 46 times to the memory used by ALS.
In contrast, we only use 2% of memory compared to ALS. In
addition,

4) Discussion on the Efficiency Variance of OnlineSCP:
We can see that the efficiency performance of our OnlineSCP
method varies from dataset to dataset. For example, compared
to ALS, the speedups of OnlineSCP on the social network
datasets, Facebook-Links, Facebook-Wall and Youtube are
only 3.9, 5.65 and 3.14 times, respectively; while it can
improve the time consumption on NIPS, Enron and NELL-
2 by more than 100 times. Similar patterns can be found for
memory usage as well, where for social network data, around
one third of memory used by ALS is needed for OnlineSCP,
while for others the relative memory can be as less as 1%
w.r.t. ALS.

One can understand this behavior based on the complexity
analysis. Specifically, the complexity of OnlineSCP, both in
time and space, consists of two parts: 1) one part related
to the overall length of the non-temporal modes, J , 2) and
the other part that depends on the number of non-zeros in
the new data, |∆Ω+|. That is, if J is a relatively large
number compared to |∆Ω+|, then the speedup obtained by
the incremental learning phase will be significantly exploited.
In fact, by plotting |∆Ω+|/J against the speedup (or relative
memory) of our method w.r.t. ALS, we can see a clear
correlation between this ratio and the efficiency performance

TABLE VI
MEAN RELATIVE MEMORY USAGE TO ALS OVER ALL BATCHES.
THE LOWER THE BETTER (BOLDFACE MEANS THE BEST RESULTS)

Dataset OnlineCP SDT RLST OnlineSCP

Facebook-Links n/a n/a n/a 0.35
Facebook-Wall n/a n/a n/a 0.32
MovieLens 17.41 60.87 46.38 0.02
LastFM 0.36 1.24 0.94 0.01
NIPS n/a n/a n/a 0.01
Youtube n/a n/a n/a 0.38
Enron n/a n/a n/a 0.04
NELL-2 1.49 n/a n/a 0.01
NELL-1 n/a n/a n/a 0.06
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Fig. 2. The efficiency of OnlineSCP is correlated to the ratio between the
number of non-zeros in data and the overall length of its non-temporal modes

as shown in Figure 2. This means that our method tends to
work better for tensors that have relatively smaller overall
length of the non-temporal modes. However, this does not
necessarily means that our method is not suitable for large-
scale sparse online tensors. In fact, it should be highlighted
that in this experiment setting, each new data batch contains
around 0.5% of overall data, so the maximum speedup can
be gained in the MTTKRP calculation is about 200 times,
compared to the ALS algorithm. In practice, as long as the
time used by our algorithm for one new batch of data is less
than the data generation time, one can always use a smaller
batch size to gain even greater efficiency.

C. Scalability

As demonstrated by results on real-world datasets, our pro-
posed method, OnlineSCP, significantly improves on existing
methods, especially for the efficiency aspect. To better show
the merits of our method, we conduct a set of scalability
experiments on a group of synthetic tensors that have been
randomly generated. Three main factors are considered for
scalability testing, including: the length of existing time, t,
the decomposition rank, R, and the order of tensor, N .

As shown in the real-world experiments, existing online
methods, OnlineCP, SDT and RLST, are specifically designed
for dense tensors and do not scale well with large S. As a
result, we set S = 1000 × 1000 unless mentioned otherwise.
Even though this is not a large-scale slice size, it is sufficient
for us to see the general trends for both time and space
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Fig. 3. Scalability comparison w.r.t. different factors

consumption. The density of all synthetic tensors are fixed
to 1×10−3 and we repeat all experiments 10 times and report
the averaged results over these 10 runs.

1) Scalability v.s. t: In order to assess the scalability
performance with respect to the length of existing time, t, we
vary t from 104 to 106 and set R = 5 and S = 100×100, since
too large R and S will significantly slow down ALS. At each
specific time length, we require all methods to process one
slice of new data and report their running time and memory
usage in Figure 3a and 3d. Both of them are presented in a
log scale. It is clear that OnlineCP, RLST and our OnlineSCP
are much better than ALS and SDT. Both the time and
memory usage are independent of the existing time for the
former, while a linear trend can be found for ALS and SDT.
The time efficiency of our method is less than RLST and
OnlineCP, since the size of data is not big enough to show the
advantage of sparse operation compared to highly optimized
matrix calculation. However, the memory usage of OnlineSCP
is the least among all methods.

2) Scalability v.s. R: For scalability regarding to the de-
composition rank, R, a 1000 × 1000 × 100 tensor is used as
the existing data and a new 1000×1000 slice is input to each
method with R chosen from 5 to 100. The results can be found
in Figure 3b and 3e (in log scale). As shown in Figure 3b,

the running time of ALS, SDT and RLST grows much faster
than OnlineCP and OnlineSCP. However, the high efficiency
of OnlineCP is gained at the cost of a linear complexity for
memory computation due to the intermediate data explosion
issue. The growth rates of memory in ALS and OnlineSCP are
considerably lower than the others since the sparse MTTKRP
is calculated column by column and only a fixed amount of
memory that depends on the number of non-zeros is used. The
memory growth for these is mainly caused by the storage for
loading matrices.

3) Scalability v.s. N : To validate the scalability of each
algorithm with respect to the order of tensor, we conduct
experiments on five tensors with orders ranging from 3 to
7, t = 100, R = 5 and the overall size of non-temporal
mode S ≈ 1 × 106. It should be noted that SDT and RLST
are omitted in this experiment since they work with 3rd-
order tensors only. Figure 3c and 3f demonstrate results for
this part of experiment. Regarding to the running time, there
is no surprise to see that all three methods are gradually
increasing with the growth of tensor order, since more loading
matrices need to be updated and the time-consuming MTTKRP
calculation need to be done more frequently. In terms of
memory usage, the space consumption of ALS and OnlineSCP
is stable and an upwards trend can be found in OnlineCP, since



it has a specific procedure to calculate all Khatri-Rao product
series at a time, in order to speedup the decomposition for
higher-order tensors.

Overall, our method demonstrates excellent performance in
terms of scalability w.r.t. different factors, compared to state-
of-the-art methods. The time complexity of OnlineSCP is only
linear to the decomposition rank and the order of tensor, and
independent of the existing time. Compared to other online
methods, the growth of time in our method is less noticeable
since the scaling factor in OnlineSCP is the number of non-
zeros in the new data, while for other methods, they have to be
scaled by the overall size of non-temporal modes. Additionally,
our method is also the most memory-efficient and scalable
method among all algorithms and it always consumes the least
amount of memory, which is also linear to the number of non-
zeros in the new data.

VI. CONCLUSIONS AND FUTURE WORK

To conclude, this paper addressed the CP decomposition
problem for online sparse tensors. We proposed an efficient
algorithm, OnlineSCP, to incrementally track the up-to-date
CP decomposition when a new batch of data is appended to the
time mode of a sparse tensor. The complexity of our algorithm
is only linear to the number of non-zeros in the new data,
which is significantly better than existing online approaches
that are designed for dense tensors. As evaluated on both
real-world and synthetic datasets, our algorithm demonstrated
considerable improvements over state-of-the-art techniques, in
terms of decomposition quality, time and space efficiency, and
scalability.

One possible strategy to further speedup our method is
replacing the current MTTKRP procedure with more advanced
hardware acceleration techniques such as GPU acceleration.
Another potential future direction is imposing constraints such
as non-negativity.
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