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Abstract—CANDECOMP/PARAFAC Decomposition (CPD) is
one of the most popular and widely applied tensor decompo-
sition methods. In recent years, sparse tensors that contain a
huge portion of zeros but a limited number of non-zeros have
attracted much interest. It can be problematic to directly apply
existing decomposition algorithms to sparse tensors, since they
are typically engineered for dense tensors and have lower
efficiency for sparse ones. Furthermore, other issues related to
sparsity can arise due to different data sources and application
requirements. In particular, the role of zero entries may vary
and it is often necessary to incorporate constraints such as
non-negativity. The ability to learn on-the-fly is also a must
for dynamic scenarios. State-of-the-art tensor decomposition
algorithms only partially address the above issues. To fill this
gap, we propose a general framework for finding CPD of sparse
tensors. We show how to model the tensor decomposition
problem by a generalized weighted CPD formulation and
solve it efficiently. Our proposed method is also flexible in
incorporating constraints and for incremental scenarios such as
dynamic data streams. Via experiments on both synthetic and
real-world datasets, we demonstrate significant improvements
for our approach in terms of effectiveness, efficiency and
scalability.

1. Introduction

Multi-dimensional data is a daily feature of our lives,
from video clips [1], to time-evolving graphs/networks such
as social networks [2], to spatio-temporal data like fMRIs
[3], [4]. The Tensor, a multi-way generalization of the
matrix, is a natural representation for such data because of
its ability to maintain the structural information. However,
working with tensors is not easy due to the complex rela-
tionships among different dimensions. As a result, in order
to simplify data, extract useful features and discover mean-
ingful knowledge, CANDECOMP/PARAFAC Decomposition
(CPD), a tool for tensors similar to PCA and SVD for
matrices, has been extensively studied and widely applied
in recent years [5], [6], [7].

As shown in Figure 1, the focus of this paper is to de-
velop a framework (SCED) that addresses three challenges
for tensor decomposition.: Problem 1) how to develop a
unified formulation for finding the CPD of general sparse
tensors together with an efficient solving algorithm; Problem
2) how to incorporate constrained decompositions, since
they often provide more meaningful results; and Problem
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Figure 1. Research problem

3) how to make the decomposition algorithm incrementally
handle dynamic updates to the tensor (the dynamic aspect
we focus on here is different from existing online or incre-
mental CPD works like [22], [23], [24], where the tensor is
growing slice by slice. In this paper, a data stream consists of
new individual cell entries that can dynamically be updated
at any position in the tensor).

An example motivating our research problem is context-
aware recommender systems, where the ratings can be mod-
eled by a three-way sparse tensor as user×item×context.
Besides challenges imposed by the large scale and sparsity,
there are several important issues to highlight.

First, the role of zero entries might be different depend-
ing on rating type. For example, zero entries in a system with
explicit ratings are usually treated as missing values and
ignored [11], [13], [14], while for implicit feedback like user
click logs, one cannot simply discard these valuable zeros
as they represent hidden preferences such as dislikes [12].
However, existing methods are usually specifically designed
for one of above cases and lack the capability to generalize.
Thus, an algorithm which works for one type of data may
not be applicable and easily adaptable to other types.

Second, in practice, there exists a rich body of do-
main knowledge and this can be modeled as constraints
that a CPD needs to satisfy. With the help of constraints,
the produced decomposition will be more meaningful and
interpretable. One example is non-negativity [15], [16],
[17], [18] where each user’s preference is modeled by a
set of non-negative coefficients, which stand for his/her
favor to each latent item/context groups. Therefore, it is
important to efficiently incorporate this side information.
Current constrained decomposition techniques have mostly
been developed for dense tensors and face challenges in
efficiency for sparse ones.



Third, it is common to see that after learning a de-
composition model from historical data, a large amount of
new data, (user, item, context) tuples in this example, is
generated. A static model can quickly become outdated in
such a scenario and it is too expensive to recompute a new
CPD due to the high time complexity. Therefore, a dynamic
(incremental) learning model is desired, but to the best of
our knowledge, there are no existing approaches that can be
used in this scenario for tensors.

Overall, existing methods have partially or separately
addressed the above issues, but how to handle them
together in a unified manner is still an open question.
To close this gap, we propose a new algorithm, SCED. Our
contributions are as follows:
• We propose a new formulation and an efficient al-

gorithm to find CPD of sparse tensors.
• We enhance our method with the capability to in-

corporate constraints, and the ability to dynamically
track new CPDs on-the-fly.

• Via experiments on synthetic and real-world
datasets, we demonstrate the effectiveness of our
framework in terms of effectiveness, efficiency and
scalability, compared to state-of-the-art baselines.

2. Related Work

Most existing works for sparse CPD specifically target
on one of three special cases: 1) True Observation (TO) that
treats zeros the same as non-zero observations; 2) Missing
Value (MV) that ignores all zeros; and 3) Implicit Informa-
tion (II) where zeros slightly contribute to the model, but
less useful than non-zeros. For TO case, Bader and Kolda [8]
proposed an algorithm based on Alternating Least Squares
(ALS) by tailoring it to sparse tensors, with support from
special data structures and customized tensor-related opera-
tions. With the advance in distributed computing, techniques
like MapReduce are also used to further speed up ALS for
large scale sparse tensors [9], [10]. In terms of MV situation,
Acar et al.’s weighted CPD is a well suit framework and an
optimization based algorithm, WOPT [11], is proposed to
decompose sparse tensors with missing values. Apart from
this, Bayesian methods are also explored by Rai et al. [13]
and Zhao et al. [14]. Compared to TO and MV, II is a less
studied case by tensor researchers, the only work can be
found is [12]. This is an extension of Matrix Factorization
(MF) works for implicit feedbacks [20], [25], [26] to tensors,
where a small uniform weight is assigned to zero entries.

In terms of constrained CPD, non-negativity and sparse-
ness are two popular constraints mainly explored by re-
searchers. Early attempt [15] handled non-negativity based
on Lee and Seung’s Multiplicative Update (MU) rule [27].
Additionally, non-negative CPD algorithms based on ANLS
[16], HALS [17] and Newton method [18] are also proposed.
Similar to MF, to promote sparse solutions, l1-norm is usu-
ally used as regularization to CPD and an implementation
of this idea can be found in [19].

Regarding to learn CPD with dynamic data stream, there
are limited number of researches on online CPD [22], [23],

TABLE 1. COMPARISON TO RELATED WORKS

General Efficient Scalable Constraints Dynamic

ALS [8] TO X X
MU [15] TO X X X
WOPT [11] MV
iTALS [12] II X*

SCED TO, MV, II X X X X

* not reported in original paper, but applicable with modifications

TABLE 2. NOTATIONS AND BASIC OPERATIONS

a, a, A, XXX scalar, vector, matrix, tensor
ai·, a·j the i-th row and j-th column vectors of A
aij the (i, j)-th element of A
A>, A−1, ||A|| transpose, inverse and Frobenius norm of A
A(n) the n-the matrix
�, ~ Khatri-Rao product, elementwise product
�−nA(n) A(N) · · · �A(n+1) �A(n−1) � · · ·A(1)

~−nA(n) A(N) · · · ~A(n+1) ~A(n−1) ~ · · ·A(1)

X(n) mode-n unfolding of XXX
Ω indices set for all entries in a tensor
Ω+, Ω− indices sets for non-zero and zero entries

[24] that new data is appending slice by slice, which is not
suitable for the dynamic scenario we aim in this paper. The
most related papers in the literature are for MF [20], [21],
where elementwise dynamic changes are handled by only
refreshing corresponding rows related to the new entry.

Overall, only partial solutions existed for our research
question and it is necessary to develop a general framework
that can address all aforementioned critical issues altogether.
Lastly, a comparison between our approach and the most
relevant and representative works is shown in Table 1.

3. Preliminaries and Background

We summarize the notations used through this paper in
Table 2. Given an N th-order tensor XXX ∈ RI1×···×IN , CPD
approximates it by N loading matrices A(1), . . . ,A(N), and
the (i1, . . . , iN )-th entry of XXX is estimated as

x̂i1,...,iN =

R∑
r=1

N∏
n=1

a
(n)
inr
, (1)

where R is the decomposition rank. For conventional CPD
(the TO case), all entries are fitted by such latent factor
model. Specifically, the loss function can be written as

Lcpd =
1

2

∑
Ω

(xi1,...,iN − x̂i1,...,iN )2

=
1

2
||X(n) −A(n)B(n)>||2,

(2)

where Ω is the set contains all possible indices combinations
such that {(i1, . . . , iN ) ∈ Ω | ∀in ∈ [1, In],∀n ∈ [1, N ]}
and B(n) =�−nA(n).

Minimizing (2) is non-trivial since it is not convex
w.r.t. all loading matrices. As a result, the working horse
algorithm [5], ALS, divides (2) into a series of small convex



sub-problems. Each sub-problem only optimizes one loading
matrix at a time by fixing all others. By doing so, we can
iteratively update each A(n), n ∈ [1, N ] as

A(n) ← X(n)B
(n)(B(n)>B(n))−1.

Directly applying ALS to sparse tensors overkills due
to its poor efficiency. To address this, Bader and Kolda [8]
speed up ALS to O(|Ω+|R) via customizing the unfolding
and Khatri-Rao operations for sparse tensors.

In the MV case that zeros represent missing values, such
zeros should be omitted since they carry no information and
fitting them will only lead the model to a wrong direction.
As a result, in order to handle missing values, weighted CPD
is introduced by Acar et al. [11] as

Lwcpd =
1

2

∑
Ω
wi1,...,iN (xi1,...,iN − x̂i1,...,iN )2, (3)

wi1,...,iN =

{
0 if xi1,...,iN is missing,
1 otherwise,

(4)

where wi1,...,iN is the weight assigned to the (i1, . . . , iN )-th
entry’s approximation.

To minimize the loss function, Acar et al. treats this
as an optimization problem and all parameters in loading
matrices are stacked as a parameter vector, which can be si-
multaneously optimized by solvers such as Nonlinear Conju-
gate Gradient. Similar to ALS, this Weighted OPTimization
(WOPT) strategy has O(|Ω+|R) time complexity.

The II case is well studied in recommender systems
with implicit feedbacks by MF [20], [25], [26]. Under
such circumstances, the zeros cannot be simply ignored as
missing values, nor be equally treated as observations, since
they somehow measure implicit information such as dislike.
One popular approach for this type of data is to assign
different weights to zero and non-zero entries, so that the
contribution of implicit information is leveraged.

Inspired by this, Hidasi and Tikk [12] proposed iTALS
algorithm, which extends the weighted CPD framework to
the II case by modifying the weighting schema (4) as

wi1,...,iN =

{
1 if xi1,...,iN = 0,

α ·#(i1, . . . , iN ) > 1 otherwise,

where α is a parameter to control the difference of weights
between non-zeros and zeros, and #(i1, . . . , iN ) is the
number of event tuples corresponding to entry (i1, . . . , iN ).

Hidasi and Tikk optimize this implicit CPD by row-wise
ALS, which shares the same principle as typical ALS but
just optimizes one row at a time as

a
(n)
in· ← x(n)in·

W(in)B(n)(B(n)>W(in)B(n))−1,

where x(n)in·
is the in-th row of the mode-n unfolding

X(n), W(in) is a matrix with all weights related to x(n)in·
on its diagonal. The major disadvantage of iTALS is its
inefficiency, as a R×R matrix, B(n)>W(in)B(n), has to be
calculated for each individual rows at a cost of O(|Ω+

in
|R2),

which results in an overall complexity as O(|Ω+|R2).

4. Our Approach

In this section, we introduce our approach for finding
the CPD for sparse tensors in general. We first show how to
model all special cases, TO, MV and II, under the weighted
CPD framework by modifying the weighting schema. Then
a highly efficient algorithm is proposed, which is also able
to handle constraints such as non-negativity and sparseness.
Lastly, we show that our algorithm is applicable to dynamic
environment where new entries arrive at high velocity.

4.1. A General Weighting Schema

Under the weighted CPD framework, TO case can be
easily modeled by assigning the weight of zero entries to 1.
Additionally, the weight of zeros in II case is always larger
than 0, but smaller than the weight of non-zeros. Based
on these, we proposed the following weighting schema that
models all these three cases:

wi1,...,iN =

{
α ∈ [0, 1] if xi1,...,iN = 0,

1 otherwise,
(5)

where α is the weight of zero entries. When α = 1, this
is equivalent to TO case; it reduces to MV case by letting
α = 0; and II case is also included in our proposed schema
by choosing α ∈ (0, 1).

4.2. Derivation of SCED

Our algorithm is an generalization of elementwise ALS
(eALS) [21] to sparse tensors. Its principal is similar to
standard ALS. The key difference is that in eALS, only one
parameter (one cell in a loading matrix) is updated at a time,
while in ALS, each time one loading matrix is estimated as a
whole. The advantage of using a finer-grain update strategy
is that it provides the freedom to choose the desired updating
sequence without scarifying effectiveness and efficiency. For
example, one can update a fraction of cells in one loading
matrix at first, then jump to the estimation of another part
of parameters in other loading matrices. This is essential for
dynamic updating, which will be discussed in §4.4.

Specifically, let jn = (i1, . . . , in−1, in+1, . . . , iN ),

b
(n)
jnr

=
N∏
ñ 6=n

a
(ñ)
iñr

, we can rewrite (1) and (3) as

x̂injn =

R∑
r=1

a
(n)
inr
b
(n)
jnr

=

R∑
r̃ 6=r

a
(n)
inr̃
b
(n)
jnr̃

+ a
(n)
inr
b
(n)
jnr

= x̂rinjn + a
(n)
inr
b
(n)
jnr
,

Lwcpd =
1

2

∑
Ω
winjn(xinjn − x̂injn)2

=
1

2

∑
Ω
winjn(xinjn − x̂rinjn − a

(n)
inr
b
(n)
jnr

)2.

The partial derivative of Lwcpd w.r.t. the (in, r)-th pa-
rameter of loading matrix A(n) is
∂Lwcpd
∂a

(n)
inr

= −
∑

Ωin

winjn(xinjn − x̂rinjn − a
(n)
inr
b
(n)
jnr

)b
(n)
jnr



a
(n)
inr
←

∑
Ω+

in

(xinjn − (1− α)x̂rinjn)b
(n)
jnr
− α(a

(n)
in·q

(n)
·r − a(n)

inr
q

(n)
rr )

(1− α)
∑

Ω+
in

(b
(n)
jnr

)2 + αq
(n)
rr

(8)

By setting the derivative to 0, then we reach the closed
form solution for a(n)

inr
as

a
(n)
inr
←
∑

Ωin
winjn(xinjn − x̂rinjn)b

(n)
jnr∑

Ωin
winjn(b

(n)
jnr

)2
. (6)

By applying the weighting schema (5) to (6) we have

a
(n)
inr
←

∑
Ω+

in

(xinjn − x̂rinjn)b
(n)
jnr
− α

∑
Ω−

in

x̂rinjnb
(n)
jnr∑

Ω+
in

(b
(n)
jnr

)2 + α
∑

Ω−
in

(b
(n)
jnr

)2
.

So far there are four summations to do for updating a(n)
inr

.
The left two are related to non-zero entries only, which can
be calculated efficiently as |Ω+

in
| � |Ωin |. While the other

two have to iterate over Ω−in , which contains indices for all
zeros in the in-th row of X(n). In the following we show that
such access to all zero entries is unnecessary and avoidable.

Since Ω+
in
∪Ω−in = Ωin we can transform the zero entries

related summations as∑
Ω−

in

x̂rinjnb
(n)
jnr

=
∑

Ωin

x̂rinjnb
(n)
jnr
−
∑

Ω+
in

x̂rinjnb
(n)
jnr
,∑

Ω−
in

(b
(n)
jnr

)2 =
∑

Ωin

(b
(n)
jnr

)2 −
∑

Ω+
in

(b
(n)
jnr

)2.

Again, the non-zero related summations can be readily
obtained, and the major concern is how to efficiently get the
terms related to Ωin . Let Q(n) = ~−nA(n)>A(n) [5], one
can easily verify that

∑
Ωin

(b
(n)
jnr

)2 = q
(n)
rr . Additionally,

recall that x̂rinjn = xinjn − a
(n)
inr
b
(n)
jnr

,
∑

Ωin
x̂rinjnb

(n)
jnr

can
be rewritten as∑

Ωin

(
∑R

r=1
a

(n)
inr
b
(n)
jnr
− a(n)

inr
b
(n)
jnr

)b
(n)
jnr

=
∑R

r=1
a

(n)
inr

∑
Ωin

(b
(n)
jnr

)2 − a(n)
inr

∑
Ωin

(b
(n)
jnr

)2

= a
(n)
in·q

(n)
·r − a(n)

inr
q(n)
rr ,

(7)

which can be efficiently computed in O(R) time.
Therefore, if Q(n) is known, the complexity to update

a
(n)
inr

is only related to |Ω+
in
|. In addition, a list of auxiliary

matrices U(1), . . . ,U(N) where U(n) = A(n)>A(n), n ∈
[1, N ] can be calculated and cached in advance, in order
to speed up the computing of Q(n), which takes O(NR2)
time. And only the n-th auxiliary matrix U(n) need to be
re-computed after updating A(n).

Overall, by putting everything together, we reach the
final update rule as (8), and the proposed SCED algorithm
is summarized in Algorithm 1.

Algorithm 1: SCED Algorithm

Input: Input tensor XXX, decomposition rank R, weight
for zeros α

Output: Loading matrices A(1), . . . ,A(N)

1 Randomly initialize A(1), . . . ,A(N)

2 for (i1, . . . , iN ) ∈ Ω+ do x̂i1,...,iN ← Eq. (1)
3 for n← 1 to N do U(n) = A(n)>A(n)

4 while stopping criteria is not met do
5 for n← 1 to N do
6 Q(n) ←~−nU(n)

7 for in ← 1 to In do
8 for (in, jn) ∈ Ω+

in
do b(n)

jn· =
∏N
ñ 6=n a

(ñ)
iñ·

9 for r ← 1 to R do
10 x̂rin· = x̂in· − a

(n)
inr

b
(n)
·r
>

11 a
(n)
inr
← Eq. (8)

12 x̂in· = x̂rin· + a
(n)
inr

b
(n)
·r
>

13 end
14 end
15 U(n) = A(n)>A(n)

16 end
17 end

4.3. Incorporating Constraints

Constraints are commonly used in real-world decompo-
sitions. Here we mainly focus on two types of constraints:
non-negativity and regularizations, due to their popularity.

4.3.1. Non-negativity. Non-negativity is a widely used con-
straint in CPD to enforce part-based solutions that are
usually more interpretable. We handle this constraint by
applying a simple ”half-wave rectifying” [17] nonlinear
projection in addition to each updating. Specifically, after
getting an updated value by (8), we keep it if it is greater
than 0; otherwise, the updated value is replaced by 0 (or a
small number such 1× 10−9 for numerical stableness). The
correctness of this is supported by the following theorem:

Theorem 1. The minimization problem

min
a

(n)
inr≥0

Lwcpd

has the unique solution as

a
(n)
inr

=

∑Ωin
winjn(xinjn − x̂rinjn)b

(n)
jnr∑

Ωin
winjn(b

(n)
jnr

)2


+

where [z]+ = max(0, z).



Proof. This can be proved in similar way as Kim et al. [28].
We can organize the derivative of Lwcpd w.r.t. a(n)

inr
as

∂Lwcpd
∂a

(n)
inr

= a
(n)
inr
· slope+ intercept,

where intercept = −
∑

Ωin
winjn(xinjn − x̂rinjn)b

(n)
jnr

and

slope =
∑

Ωin
winjn(b

(n)
jnr

)2. If intercept ≤ 0, it is clear

that Lwcpd reaches its minimum at a(n)
inr

= − interceptslope ,
where the derivative is 0; if intercept > 0, the loss, Lwcpd,
increases as a(n)

inr
become larger than 0. Thus, the minimum

is attained at a(n)
inr

= 0. As a result, combining both cases,
the solution can be expressed as a(n)

inr
= [− interceptslope ]+

4.3.2. Regularization. A common strategy to take con-
straints into considerations is treating them as regulariza-
tions to the original optimization problem as

min
A(1)...A(N)

Lwcpd +

N∑
n=1

λnφn(A(n)), (9)

where λn is a non-negative regularization parameter and
φn is the regularizing function applied to the n-th loading
matrix. Depending on constraints, different φ can be used.
For example, if φn(A(n)) = 1

2 ||A
(n)||2, Tikhonov regu-

larization is used to prevent overfitting; and φn(A(n)) =∑In
in=1 ||a

(n)
in· ||1 is another widely used regularization to

promote sparseness in solution.
Above regularized optimization problem (9) can be eas-

ily solved by the proposed SCED algorithm with similar
derivation in §4.2. Due to the page limit, here we directly
give the closed form solutions based on (6), and of course
similar efficient version as (8) can be derived

a
(n)
inr
←

∑
Ωin

winjn (xinjn−x̂
r
injn

)b
(n)
jnr∑

Ωin
winjn (b

(n)
jnr)2+λn

l2-norm,∑
Ωin

winjn (xinjn−x̂
r
injn

)b
(n)
jnr+λn·sign(a

(n)
inr)∑

Ωin
winjn (b

(n)
jnr)2

l1-norm.

4.4. Dynamic Learning

In real-world applications, it is not uncommon to see
that after decomposing a tensor, new data will keep arriving
at a high speed. A method that can efficiently track the new
decompositions in such dynamic scenario is desired, since
the static model may not perform well because it is not
up-to-date.

This problem has been extensively studied for matrix
cases and a common assumption is that the new data will
only has considerable impact to the local features, while the
global model will not be affected significantly. For example,
giving a matrix X ∈ RM×N and its decomposition W ∈
RM×R and H ∈ RN×R, in order to learn a new interaction
xmn, only the m-th and n-th rows of W and H will be
updated, while other parameters are remaining unchanged.

Algorithm 2: SCED for Dynamic Learning

Input: Existing loading matrices Å(1), . . . , Å(N),
new interaction xi1,...,iN

Output: Updated matrices A(1), . . . ,A(N)

1 for n← 1 to N do
2 A(n) ← Å(n)

3 if a(n)
in· not exists then random initialize a

(n)
in·

4 end
5 x̂i1,...,iN ← Eq. (1)
6 while stopping criteria is not met do
7 for n← 1 to N do
8 Ů← a

(n)
in·
>
a

(n)
in·

9 update a
(n)
in· /* line 8-13 of Algorithm 1 */

10 U← a
(n)
in·
>
a

(n)
in·

11 U(n) = U(n) − Ů + U /* update cache */
12 end
13 end

TABLE 3. TIME COMPLEXITY

SCED Baseline

TO (α = 1) & MV (α = 0) O(|Ω+|R)
II (α ∈ (0, 1)) O(|Ω+|R) O(|Ω+|R2)

Since CPD is a generalization of MF for multi-way data,
similar vector retaining strategy can be used for dynamically
learning new incoming interactions on tensorial data and we
summarize the dynamic version of SCED in Algorithms 2.

4.5. Complexity

Here we briefly give a time complexity analysis and
the comparison with existing methods can be found in
Table 3. ALS, WOPT and iTALS are chosen baselines that
specifically target on TO, MV and II cases, respectively.

For SCED, as shown in Algorithm 1, to update one
loading matrix, Q(n) can be calculated in (N − 1)R2 op-
erations (line 6) and for each row in A(n), a |Ω+

in
| × R

matrix B(n) is generated (line 8). Then each element a(n)
inr

is updated at a cost of O(|Ω+
in
|+R) (line 10-12). In total,

the time cost for updating A(n) is O(|Ω+|R+ InR
2). This

procedure is repeated for all loading matrices and takes
O(|Ω+|NR +

∑N
n=1 InR

2) operations for one iteration,
which is dominant by O(|Ω+|R). In summary, for TO and
MV cases, the proposed method shares same efficiency as
state-of-the-arts, while our method is R times faster than
iTALS for II case.

Similar to the static case, the complexity of dynamic
SCED is dominant by O(|Ω+

in
|R). While in general, the

dynamic case is around I times faster than batch case, where
I = mean(I1, . . . , IN ), since only one row is updated for
each loading matrix.



5. Empirical Analysis

In this section, we evaluate the performance of our
SCED algorithm with state-of-the-arts in terms of effec-
tiveness and efficiency. The performance is evaluated on
both synthetic and real-world datasets. For each dataset, both
static and dynamic settings are tested. After that, based on
the investigation on large-scale synthetic tensors, we further
analyze the scalability of our approach.

5.1. Experiment Specifications

5.1.1. Datasets. The first half of the experiments are con-
ducted on three 200 × 200 × 200 synthetic datasets: SYN-
TO, SYN-MV and SYN-II. All of them have rank as 20
and density as 1%. The key difference among them is the
role of zero entries. SYN-TO is generated by sparse loading
matrices such that its zeros are true observations. In contrast,
the zeros in SYN-MV are missing values that are randomly
sampled from a dense tensor, which is generated by random
loading matrices. Since it is non-trivial to simulate the im-
plicit feedbacks, while the weight of zeros in such situation
lies between the weights of TO and MV cases, we create
SYN-II by mixing the data generation protocols of SYN-TO
and SYN-MV. Specifically, less sparse loading matrices are
generated to form a tensor with around 50% non-zeros, from
which 1% values are randomly sampled as the SYN-II.

In addition, to better evaluate the performance of our al-
gorithm in real-world applications, three datasets of varying
characteristics have been used: MovieLens1, LastFM2 and
MathOverflow3. Their detail can be found in Table 4.

TABLE 4. DETAIL OF REAL-WORLD DATASETS

datasets Size nnz* Density Source

MovieLens 6040× 3952× 1040 1× 106 4.03× 10−5 [29]
LastFM 991× 1000× 168 2.9× 106 1.73× 10−2 [30]
MathOverflow 24818× 24818× 2351 4× 105 2.75× 10−7 [31]
* number of non-zeros

5.1.2. Baselines. Four baselines have been selected as the
competitors to evaluate the performance in our experiment

(i) ALS: an implementation for sparse tensors from
Tensor Toolbox [32].

(ii) MU: a multiplicative update rule based algorithm for
non-negative CPD from Tensor Toolbox [32].

(iii) WOPT [11]: an algorithm for decomposing incom-
plete tensors based on weighted optimization.

(iv) iTALS [12]: an approach that decomposes sparse
tensors that represent implicit feedbacks.

It should be noted that all these baselines are batch
methods and there is no existing work that can be directly
used for dynamic updating on sparse tensors. However, since

1. https://movielens.org
2. https://www.last.fm
3. https://mathoverflow.net

iTALS has a row-wise update rule, we modify it under the
same vector-retaining model as our method, as a baseline
that is able to perform dynamic learning.

5.1.3. Evaluation Metrics. The empirical performance is
measured from both effectiveness and efficiency aspects.

In terms of effectiveness, for synthetic datasets, because
the ground truth loading matrices are known already, fitness
is used and defined as

fitness ,

(
1−

∥∥X̂XX−XXX
∥∥∥∥XXX∥∥
)
,

where XXX is the tensor formed by ground truth, X̂XX is the
estimation and

∥∥•∥∥ denotes the Frobenius norm. The closer
the fitness to 1, the better decomposition we got. However,
for each real-world dataset, a test set (10%) is sampled and
Root Mean Square Error (RMSE) is used for measuring the
decomposition quality, since the ground truth is not given.
The lower RMSE, the better result.

In addition, with respect to efficiency, for static de-
composition, the average running time for one iteration,
measured in seconds, is reported to validate the time ef-
ficiency of an algorithm. On the other hand, the running
time for processing one new entry are recorded to compare
the efficiency under the dynamic setting.

5.1.4. Experimental Setup. For both synthetic and real-
world datasets, there are mainly two parts of experiments
have been conducted for performance evaluation: static and
dynamic settings.

Static setting: given a data tensor, it is decomposed by
each algorithm with the same random initialization. It should
be noted that for real-world tensors, 10% of observations
are randomly sampled and hold out as test set for RMSE
calculation. In terms of experimental parameters, 20 has
been used as the decomposition rank over all experiments,
since we are not aiming at finding the best decomposition,
but more interested in the relative performance between our
proposal and baselines. For synthetic datasets, the maximum
number of iterations is set to 50. While for real-world
datasets, this has been set to 10 due to low efficiency of
iTALS and WOPT.

Dynamic setting: 10% of observations are randomly
sampled as dynamic set, such that each dataset is divided
into different parts: 90% training, 10% dynamic for synthetic
datasets, and 80% training, 10% dynamic and 10% testing
for real-world datasets. The training set is decomposed by
the batch algorithm with different random initializations, and
the best result is chosen as the base for dynamic learning. In
the dynamic updating phase, at each time stamp, an entry
from dynamic set is randomly selected and processed by
both our SCED algorithm and its competitors. Specifically,
for batch baselines (ALS and WOPT), previous decom-
position is used as a hot start and only one iteration is
performed to process the new data. After that, effectiveness
(fitness for synthetic, RMSE for real-world datasets) and
efficiency (running time in seconds) metrics are recorded
for performance demonstration.
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Figure 2. Performance of static decomposition on synthetic datasets

Another difference between synthetic and real-world ex-
periments is the choice of baselines. For synthetic datasets,
since the role of zeros are known, only algorithms that
specifically target on it are used for comparison. For exam-
ple, ALS and MU are selected as baselines for SYN-TO,
compared to our SCED variants, SCED-t and SCED-nn;
while the comparison is only conducted between WOPT
and SCED-m for SYN-MV. Conversely, for SYN-II, all
algorithms are used for experiment, in order to show the
merits of assigning small weight to zero entries under such
circumstance. Similarly, for real-world datasets, all baselines
have been used for comparison in the static experiment.
While under the dynamic setting, only SCED-i and iTALS
are used for dynamic learning, because of their relative good
performance in static case, and the low efficiency of other
batch baselines.

In terms of algorithm-specified parameters, apart from
the aforementioned parameters (rank and maximum number
of iterations), there is no parameter need to be tuned for ALS
and MU. For WOPT, default parameters have been used for
its internal line search procedure. Regarded to SCED-i and
iTALS, the weight of zeros (α) is set as the density of each
dataset, in order to balance the contribution of non-zero and
zero entries. This is just a heuristic way and of course it can
be fine tuned by cross validation. While since the goal is to
see the relative performance among different algorithms, we
chose to settle on this strategy for our experiment. Lastly,
there is no regularization has been used in SCED, for a fair
comparison, i.e., λn = 0, n ∈ [1, N ].

For each dataset, all experiments are replicated 10 times
on a desktop with Intel i7 processors, 16 GB RAM and
Matlab 2016b. The reported results are averaged over these
10 runs.

5.2. On Syntheic datasets

5.2.1. Static Results. The performance of decomposing
synthetic tensors under the static setting is presented in
Figure 2. Since the efficiency is only related to the number
of non-zeros and has no linkage to the types of data, we
summarize all efficiency result into Figure 2d.

As can be seen from the figures, in most of cases,
our proposal, SCED (denoted by solid lines), shows bet-
ter decomposition quality, compared to baselines (denoted

by dashed lines). Specifically, for SYN-TO and SYN-MV
datasets, even though baselines yield acceptable results,
significant improvements can be found in our algorithm. For
SYN-II dataset, all methods that treat zeros as equally im-
portant as observations work very poor. In contrast, slightly
better performance can be found in WOPT, which ignores
all distractions from zero entries. Even this, it is still beaten
by our approach by a very large margin, where SCED-m
achieves around 0.5 in fitness score, while the fitness of
WOPT is lower than 0.1. Both SCED-i and iTALS show
similar performance to each other. However, it is clear that
iTALS is much slower than our proposal.

In terms of efficiency, ALS and MU share similar perfor-
mance to each other, while they are nearly twice slower than
our algorithm. Significant time consumption can be observed
in WOPT, due to its internal line search procedure, which
makes it less appealing compared to our algorithm.

5.2.2. Dynamic Results. In this part of experiment, the
training set is decomposed by the batch algorithm for ini-
tialization: ALS for SYN-TO, WOPT for SYN-MV and
batch SCED-i for SYN-II datasets, respectively. With the
best seed, the dynamic set is learned and the results are
reported in Figure 3.

It is clear that for SYN-TO dataset, our proposed method
achieves perfect overlapping with ALS, which is a batch
algorithm that does optimization on all observations to
time. This verifies the usefulness of the proposed dynamic
updating schema. In terms of efficiency, on average, our
method speeds up the processing time for one new entry by
around 170 times (∼ 0.09 second in ALS v.s. ∼ 5 × 10−4

second in SCED-t).
Even greater speed-up can be observed for SYN-MV,

where our algorithm (∼ 5.5 × 10−4 second) is more than
1400 times faster than the batch baseline, WOPT (∼ 0.8
second). More importantly, better decomposition quality is
also shown in our algorithm, which confirmed the superior
performance of our algorithm, compared to WOPT, in both
static and dynamic settings.

With respect to SYN-II dataset, both SCED-i and iTALS
are capable to dynamically track the new CPD when new
entries fed in. Similar to SYN-TO, perfect overlapping can
be found while our method is three times faster than iTALS.
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Figure 3. Dynamic decomposition on synthetic datasets

5.3. On Real-world datasets

5.3.1. Static Results. The performance comparison on real-
world datasets can be found in Figure 4. Among all datasets,
the smallest RMSEs are always obtained by SCED-i and
iTALS, which means that giving small weight to zero entries
is more likely to get better understanding of data, compared
to the other two extreme cases that either totally ignoring
them or treating them equally as observations. TO-based
methods (α = 1) produce poor results in general. How-
ever, within this group, we still see better results from our
algorithm. For example, one can find that SCED-nn shows
much better convergence, compared to its competitor for the
same task, MU. Similar to the results on synthetic datasets,
significant improvement can be seen between SCED-m and
WOPT in MovieLens and LastFM. On the other hand,
we notice the considerable performance drop of them on
MathOverflow. One reason behind this might be that their
optimizations focus on non-zeros only, while MathOverflow
is much more sparse than other two datasets. As a result,
the CPDs produced by them will greatly bias to known
entries, which can be considered as overfitting. One possible
solution to address this issue is to add regularizations into
the objectives, which can be easily handled by our proposal
(e.g., set λ to 0.1 with φ as l2-norm), while there is no clear
way to adopt WOPT for this case.

5.3.2. Dynamic Results. As mentioned in experiment setup,
only SCED-i and iTALS has been chosen for dynamic
updating for real-world datasets, due to their good static
performance and the inefficiency of other batch methods
for large-scale datasets. We report the performance com-
parison in Figure 5 and Table 5. Additionally, to validate
whether such dynamic learning truly effective, we also

TABLE 5. AVERAGE RUNNING TIME TO PROCESS ONE NEW ENTRY ON
REAL-WORLD DATASETS. VALUES IN PARENTHESES ARE NUMBER OF

ENTRIES CAN BE PROCESSED PER MINUTES

dataset iTALS SCED-i

MovieLens 0.0255 (2356) 0.0094 (6359)
LastFM 0.0484 (1241) 0.0185 (3244)
MathOverflow 0.0091 (6581) 0.0081 (7408)

decompose each tensor with batch SCED-i algorithm before
(80% training) and after (80% training + 10% dynamic) the
dynamic learning phase, as reference points. Specifically,
the maximum number of iterations for batch method is set
to 200 and the decomposition generated before feeding the
dynamic set is used as the seed for hot start.

As can be seen from Figure 5, both SCED-i and iTALS
can effectively tracking the decompositions when new data
arrives, while our algorithm is around 3 times faster than
iTALS. In terms of efficiency of batch method, it takes
320, 475 and 600 seconds to decompose the training sets of
MovieLens, LastFM and MathOverflow, respectively. And
roughly speaking, extra 30 seconds is needed for processing
the additional dynamic sets. Such high expense makes batch
method infeasible to be applied to a highly dynamic system
that new data is always arriving at high velocity. Unlike
batch algorithm that can only process one state of data at
high time cost, dynamic algorithms can keep tracking de-
compositions of all intermediate states at significantly lower
cost. This means the proposed algorithm can efficiently and
easily refresh the decomposition model to date, therefore,
to provide better service than batch techniques, where the
most up-to-date decomposition is not always available.
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Figure 4. Static decomposition on real-world datasets
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Figure 5. Dynamic decomposition on real-world datasets

5.4. Scalability

As shown in §4.5, theoretically, SCED is R times faster
than iTALS. Previous experiments partially confirm this
analysis. However, the observed speed-up is only around 3
to 5 times. This is because that R has been set to 20, which
is too small to see the trend. As a result, to evaluate the
performance of SCED and iTALS on large scale datasets,
scalability test is performed w.r.t. three key features: number
of non-zeros, decomposition rank and tensor size.

Specifically, random tensors of size 1000×1000×1000
with R = 20 are decomposed and the result can be found
in Figure 6a. The number of non-zeros in them varies from
1 × 104 to 1 × 108. Similar evaluation has been done for
analyzing the scalability w.r.t. R (Figure 6b, R varies from
2 to 128, by fixing nnz = 1 × 104 and size as 1000 ×
1000× 1000) and the tensor size (Figure 6c, cardinality of
a mode varies from 100 to 1000, with R = 20 and nnz =
1× 104). The reported results are average running time for
one iteration under the batch setting, while it is clear that
similar trends can be seen for the dynamic case.

5.5. Highlights of Results

To make a clear summary of the experimental perfor-
mance, we highlight some key findings as follows.

• The proposed SCED algorithm uniformly produces
best or close-to-best quality decompositions on dif-
ferent types of data, no matter in static or dynamic
settings. Two major improvements can be found in
SCED-m v.s. WOPT, and SCED-nn v.s. MU.

• The efficiency of SCED is similar to ALS and MU.
While our method is significantly faster than WOPT
and iTALS, spanning all types of data and settings.

• The proposed dynamic learning method is highly ef-
fective and usually demonstrates comparable or even
better result to batch methods. While our method
reduce time cost by factor of hundreds to thousands.

• Compared to iTALS, our method is more suitable to
be applied to large scale data since better scalability
is shown w.r.t. number of non-zeros, decomposition
rank and tensor size.
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Figure 6. Scalability

6. Conclusions and Future Work

To conclude, in this paper, we address the problem of
finding the CPD of sparse tensors. An efficient algorithm,
SCED, is proposed, which has linear time complexity w.r.t.
the number of non-zeros and decomposition rank. In addi-
tion, our framework is also flexible to handle constraints
such as non-negativity and regularizations like l1 and l2
norms. Last but not the least, a dynamic learning algorithm
is also proposed to tackle with dynamic tensors that have
new data coming at element-level. As evaluated on both
synthetic and real-world datasets, under both static and
dynamic settings, our algorithm demonstrate outstanding
performance in terms of effectiveness, efficiency and scala-
bility, compared to state-of-the-art algorithms.

Regarding to future work, apparently there is still room
for improving our method. One possible direction is to
link our work with existing online work, as slice-by-slice
online tensors can be considered as a special dynamic case.
Another potential area is to further extend our method for
more dynamic cases, since currently we only looked at
the addition case, while situations such as deletion and
modification of existing cells are also of interest and perhaps
can be addressed in similar manner as the current proposal.
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