
Accelerating Online CP Decompositions for
Higher Order Tensors

Shuo Zhou1, Nguyen Xuan Vinh1, James Bailey1, Yunzhe Jia1, Ian Davidson2

1Dept. of Computing and Information Systems, The University of Melbourne, Australia
1{zhous@student., vinh.nguyen@, baileyj@, yunzhej@student.}unimelb.edu.au

2Dept. of Computer Science, University of California, Davis, USA
2davidson@cs.ucdavis.edu

ABSTRACT
Tensors are a natural representation for multidimensional
data. In recent years, CANDECOMP/PARAFAC (CP) de-
composition, one of the most popular tools for analyzing
multi-way data, has been extensively studied and widely
applied. However, today’s datasets are often dynamically
changing over time. Tracking the CP decomposition for such
dynamic tensors is a crucial but challenging task, due to the
large scale of the tensor and the velocity of new data ar-
riving. Traditional techniques, such as Alternating Least
Squares (ALS), cannot be directly applied to this prob-
lem because of their poor scalability in terms of time and
memory. Additionally, existing online approaches have only
partially addressed this problem and can only be deployed
on third-order tensors. To fill this gap, we propose an ef-
ficient online algorithm that can incrementally track the
CP decompositions of dynamic tensors with an arbitrary
number of dimensions. In terms of effectiveness, our algo-
rithm demonstrates comparable results with the most ac-
curate algorithm, ALS, whilst being computationally much
more efficient. Specifically, on small and moderate datasets,
our approach is tens to hundreds of times faster than ALS,
while for large-scale datasets, the speedup can be more than
3,000 times. Compared to other state-of-the-art online ap-
proaches, our method shows not only significantly better
decomposition quality, but also better performance in terms
of stability, efficiency and scalability.

Keywords
Tensor Decomposition; CP Decomposition; Online Learning

1. INTRODUCTION
Numerous types of data are naturally represented as multi-

dimensional structures. The Tensor, a multi-way generaliza-
tion of the matrix, is useful for representing such data. Sim-
ilar to matrix analysis tools, such as PCA and SVD, tensor
decomposition (TD) is a popular approach for feature extrac-
tion, dimensionality reduction and knowledge discovery on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939763

multi-way data. It has been extensively studied and widely
applied in various fields of science, including chemometrics
[1], signal processing [7], computer vision [14, 29], graph and
network analysis [10, 17] and time series analysis [5].

In the era of big data, data is often dynamically changing
over time, and a large volume of new data can be gener-
ated at high velocity. In such dynamic environments, a data
tensor may be expanded, shrunk or modified on any of its
dimensions. For example, given a network monitoring ten-
sor structured as sourceˆdestinationˆportˆ time, a large
number of network transactions are generated every second,
which can be recorded by appending new slices to the tensor
on its time mode. Additionally, new IP addresses may be
added and invalid addresses may be removed from the data
tensor. Overall, this data tensor is highly dynamic.

As TD is usually the first and necessary step for analyzing
multi-way data, in this work, we aim to address the problem
of how to adaptively track the decompositions for such time-
evolving tensors. Specifically, we are particularly interested
in dynamic tensors that are incrementally growing over time,
while the other dimensions remain unchanged. These are
the most common type of dynamic tensors that occur in
practice. We refer to such tensors as online tensors, also
known as tensor streams and incremental tensors [27, 28].

Finding the decompositions for large-scale online tensors
is challenging. The difficulty mainly arises from two factors.
First, as online tensors are growing with time, their overall
size is potentially unbounded. Thus, TD techniques for such
tensors need to be highly efficient and scalable, from both
time and space perspectives. Second, a high data generation
rate demands decomposition methods providing real-time
or near real-time performance [6]. However, traditional TD
techniques, such as Tucker and CANDECOMP/PARAFAC
(CP) decompositions, cannot be directly applied to this sce-
nario because: (i) they require the availability of the full
data for the decomposition, thus having a large memory
requirement; and (ii) their fitting algorithms, Higher-Order
SVD (HOSVD) for Tucker [9], and Alternating Least Squares
(ALS) or other variants for CP [8], are usually computation-
ally too expensive for large-scale tensors.

A recipe for addressing the above challenges is to adapt
existing approaches using online techniques. In recent years,
several studies have been conducted on tracking the Tucker
decomposition of online tensors by incorporating online tech-
niques, such as incremental SVD [14, 18, 26], and incremen-
tal update of covariance matrices [27, 28]. However, there is
a limited amount of work on tracking the CP decomposition
of an online tensor. The only work in the literature, pro-

posed by Nion and Sidiropoulos [20], specifically only deals
with third-order tensors and there is no provision for higher-
order tensors with more than 3 dimensions. To fill this gap,
we propose an efficient algorithm to find the CP decomposi-
tion of large-scale high-order online tensors, with low space
and time usage. We summarize our contributions as follows:

‚ We propose a scalable algorithm for efficiently tracking
the CP decompositions of online tensors. Not limited
to basic third-order tensors, our model can also handle
higher-order tensors that have more than 3 dimensions.

‚ Through experimental evaluation on seven real world
datasets, we show that our approach can provide more
accurate results and better efficiency, compared with
state-of-the-art approaches.

‚ Based on empirical analysis on synthetic datasets, our
algorithm produces more stable decompositions than
existing online approaches, as well as better scalability.

The rest of this paper is organized as follows. Section 2
gives a review of current techniques and Section 3 introduces
background knowledge. Our proposal is discussed in Section
4. We start from third-order tensors and then extend this
model to general tensors that have an arbitrary number of
dimensions. After that, the performance of our approach
is evaluated on both real world and synthetic datasets in
Section 5. Lastly, Section 6 concludes and discusses future
research directions.

2. RELATED WORK
The problem of decomposing online tensors was originally

proposed by Sun et al. [27, 28], wherein they refer to this
problem as Incremental Tensor Analysis (ITA). Three vari-
ants of ITA are discussed in their work: (1) dynamic ten-
sor analysis (DTA) modifies the covariance matrices calcu-
lation step in typical HOSVD in an incremental fashion; (2)
stream tensor analysis (STA) is an approximation of DTA
by the SPIRIT algorithm [21]; and (3) window-based tensor
analysis (WTA) uses a sliding window strategy to improve
the efficiency of DTA. The main issue of these techniques is
that they have not fully optimized the most time consuming
step, i.e., diagonalizing the covariance matrix for each mode,
which limits their efficiency. To overcome this issue, Liu et
al. [17] propose an efficient algorithm that enforces the diag-
onalization on the core tensors only. Additionally, another
trend for improving the efficiency of HOSVD on online ten-
sors is to replace SVD with incremental SVD algorithms.
Several applications of this idea can be found in computer
vision [14, 18, 26] and anomaly dectection [25] fields.

The major difference between the aforementioned tech-
niques and our approach is that they are online versions of
Tucker decomposition. Although CP decomposition can be
viewed as a special case of Tucker with super-diagonal core
tensor, none of the above methods provides a way to enforce
this constraint. As a result, these algorithms are not suitable
for tracking the CP decompositions of online tensors.

Unlike the existing extensive studies on online Tucker de-
composition, there is a limited research reported for online
CP decomposition. The most related work to ours was pro-
posed by Nion and Sidiropoulos [20], which introduced two
adaptive algorithms that specifically focus on CP decompo-
sition: Simultaneous Diagonalization Tracking (SDT) that

incrementally tracks the SVD of the unfolded tensor; and
Recursive Least Squares Tracking (RLST), which recursively
updates the decomposition factors by minimizing the mean
squared error. However, the major drawback of this work is
that they work on third-order tensors only, while in contrast
we propose a general approach that can incrementally track
the CP decompositions of tensors with arbitrary dimensions.

In another related area, among the studies that focus on
improving CP decomposition for handling large-scale ten-
sors, GridTF, a grid-based tensor factorization algorithm
[22] is particularly related to our problem. The main idea
of GridTF is to partition the large tensor into a number of
small grids. These grids are then factorized by a typical ALS
algorithm in parallel. Finally, the resulting decompositions
of these sub-tensors are combined together using an iterative
approach. In fact, as stated by the authors, if such partition-
ing is enforced on the time mode only, then GridTF can be
used for tracking the CP decomposition of tensor streams.

3. PRELIMINARIES

3.1 Notation and Basic Operations
Following the notation in [16], vectors are denoted by

boldface lowercase letters, e.g., a, matrices by boldface up-
percase letters, e.g., A, and tensors by boldface Euler script
letters, e.g., XXX. The order of a tensor, also known as the
number of ways or modes, is its number of dimensions. For
example, vectors and matrices are tensors of order 1 and 2.
A tensor XXX P RI1ˆ¨¨¨ˆIN is an N th-order one consisting of
real numbers and the cardinality of its i-th order, i P r1, N s
is Ii. We refer to tensors with more than 3 modes as higher -
order ones. The elements of a tensor are retrieved by their
indices, and a slice of an N th-order tensor is an pN ´ 1qth-
order tensor with the index of a particular mode fixed.

Let AJ, A´1, A: and
∥∥A

∥∥ denote the transpose, in-
verse, Moore-Penrose pseudoinverse and Frobenius norm of
A. Let Ap1q,Ap2q, . . . ,ApNq represent a sequence of N ma-
trices. The Khatri-Rao and Hadamard products [16] and
element-wise division are denoted by d, f and m, respec-
tively. Furthermore, the Khatri-Rao and Hadamard prod-
ucts of a sequence of N matrices ApNq,ApN´1q, . . . ,Ap1q are
denoted by dNApiq and fNApiq. Note that the superscripts
in the sequence are inverted and the subscript i ‰ n is used
when the n-th matrix is not included in above operations,
as dN

i‰nApiq and fN
i‰nA

piq.
Tensor unfolding, or matricization, is a process to trans-

form a tensor into a matrix [15]. Generally, given an N th-
order tensor XXX P RI1ˆI2ˆ¨¨¨ˆIN , its mode-n unfolding Xpnq P

RInˆ
śN

i‰n Ii can be obtained by permuting the dimensions of
XXX as rIn, I1, . . . , In´1, In`1, . . . , IN s and then reshaping the

permuted tensor into a matrix of size In ˆ
śN
i‰n Ii.

3.2 CP Decomposition
CP decomposition is a widely used technique for exploring

and extracting the underlying structure of the multi-way
data. Basically, given an N th-order tensor XXX P RI1ˆ¨¨¨ˆIN ,
CP decomposition approximates this tensor by N loading
matrices Ap1q, . . . ,ApNq, such that

Xpnq « Apnq
pApNq

d ¨ ¨ ¨Apn`1q
dApn´1q

¨ ¨ ¨ dAp1q
q
J

“ Apnq
p
ÄN

i‰n Apiq
q
J

“ JAp1q, . . . ,ApNqK

(1)

where J‚K is defined as the CP decomposition operator and

each loading matrices Apiq, i P r1, N s is of size IiˆR, where
R is the tensor rank, indicating the number of latent factors.

To find the CP decomposition JAp1q, . . . ,ApNqK for an
N th-order tensor XXX, the objective is to minimize the esti-
mation error L, which is defined as

L “ 1

2

∥∥Xpnq ´Apnq
pdN

i‰nApiq
q
J
∥∥2

However, directly minimizing L over Ap1q, . . . ,ApNq is diffi-
cult, since L is not convex w.r.t. Ap1q, . . . ,ApNq. As a result,
a widely applied approach is ALS. The main idea is to di-
vide the above optimization problem into N sub-problems
and the n-th one, n P r1, N s fixes all variables but Apnq, and
then minimizes the convex objective L w.r.t. Apnq, that is

Apnq
Ð arg min

Apnq

1

2

∥∥Xpnq ´Apnq
pdN

i‰nApiq
q
J
∥∥2

(2)

3.3 Online CP Decomposition
Here we briefly introduce the main idea of existing online

CP decomposition algorithms. A third-order online tensor
XXX P RIˆJˆptold`tnewq is used as a running example, where
XXX is expanded from XXXold P RIˆJˆtold by appending a new
chunk of data XXXnew P RIˆJˆtnew at its last mode. Con-
sidering that in most online systems, the size of the new
incoming data is usually much smaller than that of all ex-
isting historical data, thus we assume tnew ! told. The CP
decomposition of XXXold is written as JAold,Bold,ColdK and
the aim is to find the CP decomposition JA,B,CK of XXX.

SDT and RLST [20]: Both SDT and RLST transform
the online tensor decomposition problem into an incremental
matrix factorization problem, by letting D “ B d A, so
that equation (1) can be written as Xp3q “ CDJ. Then the
problem is how to estimate C and D.

Different strategies are used in SDT and RLST for cal-
culating C and D. SDT chooses to do this by making use
of the SVD of Xoldp3q, UoldΣoldV

J
old. Specifically, there

will always be a matrix Wold that Cold “ UoldW
´1
old and

Dold “ VoldΣoldW
J
old. Similarly, a matrix W can be found

to make C “ UW´1 and D “ VΣWJ, where UΣVJ

is the SVD of Xp3q, which can be efficiently calculated by
incremental SVD algorithms. Furthermore, the authors as-
sume that there is only a tiny difference between D and
Dold so that the first told rows of C are approximately equal
to Cold. Under this assumption, W´1 can be calculated as
rU:UoldW

´1
old, where rU is the first told rows of U. Conse-

quently, W, C and D can be obtained.
In contrast, RLST follows a more direct approach to get C

and D. Recall that Xp3q “ CDJ, firstly, Cnew is calculated

as Xnewp3qpD
J
oldq

: and C is updated by appending Cnew to
Cold. Then D is incrementally estimated with Xnewp3q and
Cnew based on the matrix inversion and pseudo-inversion
lemmas. Due to the page limit, we refer interested readers
to the original papers [20] for more details.

After getting C and D, the last step for both SDT and
RLST is to estimate A and B from D. This process is done
by applying SVD on the matrix formed by each column of
D, and then putting the left and right principal singular
vectors into A and B, respectively.

Overall, SDT and RLST both deal with the online CP de-
composition problem by flattening the non-temporal modes.
However, this is the main limitation to their performance.

Firstly, it is time consuming due to the cost of SVD. Al-
though the authors replaced the traditional SVD with the
Bi-SVD algorithm, the complexity of this is still OpR2IJq,
which limits their applications on large-scale tensors. Addi-
tionally, this flattening process makes SDT and RLST not
easy to extend to higher-order tensors, since the flattened
matrix will be much larger and it has to be recursively de-
composed to loading matrices in the end, which is also costly.

GridTF [22]: As mentioned earlier, the basic idea of
GridTF is to partition the whole tensor into smaller tensors
and then combine their CP decompositions together. In re-
gards to the example here, XXX is the online tensor, XXXold and
XXXnew are the two partitions. To obtain the CP decompo-
sition of XXX, the first step of GridTF is to decompose XXXnew
by ALS as JAnew,Bnew,CnewK, while the decomposition of
XXXold is already known from the last time step.

The combination step is a recursive update procedure such
that in every iteration, each mode is updated with a modi-
fied ALS rule, until the whole estimation converges, or the
maximum number of iterations has been reached. In our no-
tation, the update rules are given as follows, of which further
details can be found in [22].

1) For non-temporal modes A and B

A Ð
AoldpPold m pA

J
oldAqq

Qm pAJAq
`

AnewpPnew m pA
J
newAqq

Qm pAJAq

B Ð
BoldpPold m pB

J
oldBqq

Qm pBJBq
`

BnewpPnew m pB
J
newBqq

Qm pBJBq

2) For temporal mode C

C Ð

»

—

—

–

ColdpPold m pC
J
oldCqq

Qm pCJCq
CnewpPnew m pC

J
newCqq

Qm pCJCq

fi

ffi

ffi

fl

where A, B, C are randomly initialized at the beginning and
Pold “ pA

J
oldAq f pB

J
oldBq f pC

J
oldCq, Pnew “ pA

J
newAq f

pBJnewBq f pCJnewCq, and Q “ pAJAq f pBJBq f pCJCq.
The main issue of applying GridTF to online CP decom-

position is its efficiency. Firstly, even though only the new
data need to be decomposed, this is still expensive, espe-
cially when the size of new data is large. Secondly, for es-
timating C and calculating Pold and Q, CJoldC needs to be
calculated, costing R2told operations. This means the time
complexity of the update procedure is linear in the length of
the existing data, told, which can be huge, thus significantly
limiting its ability for processing online tensors.

4. OUR APPROACH
In this section, we introduce our proposal for tracking the

CP decomposition of online multi-way data in an incremen-
tal setting. For presentation clarity, initially a third-order
case will be discussed. Then, we further extend to more
general situations, where our proposed algorithm is able to
handle tensors that have arbitrary number of modes. With-
out loss of generality, we assume the last mode of a tensor
is always the one growing over time, while the size of the
other modes are kept unchanged with time.

4.1 Third-order Tensors
Following the same notation introduced in Section 3.3,

similar to the classic ALS algorithm, our approach handles
the problem in an alternating update fashion. That is, we

first fix A and B, to update C, and then sequentially update
A and B, by fixing the other two.

4.1.1 Update Temporal Mode C
By fixing A and B, from (2) we have

C Ð arg min
C

1

2

∥∥Xp3q ´CpBdAqJ
∥∥2

“ arg min
C

1

2

∥∥∥∥„Xoldp3q

Xnewp3q



´

„

Cp1q

Cp2q



pBdAqJ
∥∥∥∥2

“ arg min
C

1

2

∥∥∥∥„Xoldp3q ´Cp1qpBdAqJ

Xnewp3q ´Cp2qpBdAqJ

∥∥∥∥2

(3)

It is clear that the norm of the first row is minimized with
Cold, since A and B are fixed as Aold and Bold from the last
time step. The optimal solution to minimize the second row
is Cp2q “ Xnewp3qppBdAqJq:. As a result, C is updated by
appending the projection Cnew of Xnewp3q via the loading
matrices A and B of previous time step, to Cold, i.e.,

C “

„

Cold

Cnew



“

„

Cold

Xnewp3qppBdAqJq:



(4)

4.1.2 Update Non-temporal Modes A and B
First, we update A. By fixing B and C, the estimations

error L can be written as 1
2

∥∥Xp1q ´ApCdBqJ
∥∥2

, and the
derivative of L w.r.t. A is

BL
BA

“ Xp1qpCdBq ´ApCdBqJpCdBq

By setting the derivative to zero and letting P “ Xp1qpCd

Bq and Q “ pCdBqJpCdBq, we have

A “ PQ´1 (5)

Directly calculating P and Q is costly. This is mainly be-
cause the output of pCdBq is a huge matrix of size Jptold`
tnewq ˆ R, where R is the tensor rank. It further results in
OpRIJptold ` tnewqq and OpR2Jptold ` tnewqq operations to
get P and Q, respectively. Although for Q, the Khatri-Rao
product can be avoided by calculating it as pCJCqfpBJBq
[16], which has a complexity of OpR2

pJ ` told ` tnewqq, this
is still expensive since told is usually quite large. As a result,
in order to improve the efficiency, we need a faster approach.

Firstly, let us look at P. By representing Xp1q and C with
the old and new components, we have

P “ Xp1qpCdBq

“
“

Xoldp1q,Xnewp1q

‰

ˆ„

Cold

Cnew



dB

˙

“
“

Xoldp1q,Xnewp1q

‰

„

Cold dB
Cnew dB



“ Xoldp1qpCold dBq `Xnewp1qpCnew dBq

(6)

recall that B has been fixed as Bold, so that the first part of
the last line of equation (6) only contains components from
the previous time step. Suppose we know this part already
and denote it by Pold, then (6) can be rewritten as

P “ Pold `Xnewp1qpCnew dBq (7)

This means that by keeping a record of the previous P,
the large computation can be avoided and it can be effi-
ciently updated in an incremental way. Specifically, suppose

P is initialized with a small partition XXXpτq P RIˆJˆτ that
contains the first τ slices of the data, where τ ! told, we
only need OpRIJτq operations to construct P. Afterwards,
whenever new data comes, P can be efficiently updated at
the cost of OpRIJtnewq, which is independent to told.

Likewise, Q can be estimated as

Q “ Qold ` pCnew dBqJpCnew dBq

“ Qold ` pC
J
newCnewq f pB

JBq
(8)

Thus, by storing the information of previous decomposi-
tion with complementary matrices P and Q, we achieve the
update rule for A as follows,

P Ð P`Xnewp1qpCnew dBq

Q Ð Q` pCJnewCnewq f pB
JBq

A Ð PQ´1

(9)

The update rule for B can be derived in a similar way as

U Ð U`Xnewp2qpCnew dAq

V Ð V ` pCJnewCnewq f pA
JAq

B Ð UV´1

(10)

where U “ Xp2qpC d Aq, V “ pC d AqJpC d Aq are the
two complementary matrices of mode 2.

To sum up: For a third-order tensor that grows with
time, we propose an efficient algorithm for tracking its CP
decomposition on the fly. We name this algorithm as On-
lineCP, comprising the following two stages:

1) Initialization stage: for non-temporal modes, com-
plementary matrices P, Q, U and V are initialized with the
initial tensor XXXinit and its CP decomposition JA,B,CK as

P “ Xinitp1qpCdBq,Q “ pCJCq f pBJBq

U “ Xinitp2qpCdAq,V “ pCJCq f pAJAq

2) Update stage: for each new incoming data chunk
XXXnew, it is processed as

a) for the temporal mode 3, C is updated with (4)
b) for non-temporal modes 1 and 2, A is updated with (9)

and B is updated with (10), respectively.

4.2 Extending to Higher-Order Tensors
We now show how to extend our approach to higher-order

cases. Let XXXold P RI1ˆ¨¨¨ˆIN´1ˆtold be an N th-order tensor,

JAp1q
old, . . . ,A

pN´1q
old ,A

pNq
old K be its CP decomposition, theN -th

mode be the time. A new tensorXXXnew P RI1ˆ¨¨¨ˆIN´1ˆtnew is
added to XXXold to form a tensor XXX P RI1ˆ¨¨¨ˆIN´1ˆptold`tnewq,
where told " tnew. In addition, two sets of complementary
matrices Pp1q, . . . ,PpN´1q and Qp1q, . . . ,QpN´1q are stored,
where Ppnq and Qpnq, n P r1, N ´ 1s, are the complementary
matrices for mode n. We are interested in finding the CP
decomposition JAp1q, . . . ,ApN´1q,ApNqK of XXX.

4.2.1 Update Temporal Mode
Similar to the third-order case, the loading matrix of the

time mode, ApNq, is updated at first by fixing the other
loading matrices and minimizing the estimation error L

ApNq
Ð arg min

ApNq

1

2

∥∥XpNq ´ApNq
pdN´1Apiq

q
J
∥∥2

Basically, the above equation has the same structure as (3),

so we have a similar update rule for ApNq

ApNq
Ð

«

A
pNq
old

A
pNq
new

ff

“

„

A
pNq
old

XnewpNqppd
N´1Apiq

q
J
q
:



4.2.2 Update Non-temporal Modes
For each non-temporal mode n P r1, N´1s, the estimation

error L on mode n is 1
2

∥∥Xpnq ´Apnq
pdN

i‰nApiq
q
J
∥∥2

, and
similar update rule as equation (9) can be applied, that is

Ppnq Ð Ppnq `Xnewpnq

´

ApNq
new dKpnq

¯

Qpnq
Ð Qpnq

`

´

ApNq
new

J
ApNq
new

¯

fHpnq

Apnq
Ð PpnqpQpnq

q
´1

where we denote the Khatri-Rao product of the first N ´ 1
but the n-th loading matrices, dN´1

i‰n Apiq, as Kpnq and the

Hadamard product, fN´1
i‰n ApiqJApiq, as Hpnq.

4.2.3 Avoid Duplicated Computation
In fact, if we were to compute every Kpnq for each n P

r1, N ´ 1s, there would be some redundant computation
among them. Take a 5th-order tensor for example, where
Kp1q

“ Ap4q
d Ap3q

d Ap2q, Kp2q
“ Ap4q

d Ap3q
d Ap1q,

Kp3q
“ Ap4q

dAp2q
dAp1q, and Kp4q

“ Ap3q
dAp2q

dAp1q. It
is clear that both Kp1q and Kp2q have computed Ap4q

dAp3q,
and Kp3q and Kp4q share a common computation Ap2q

dAp1q.
These redundant Khatri-Rao products are computationally
expensive to calculate, and more importantly, the amount
of redundancy will dramatically increase with the number
of modes N , since more common components are shared.

To overcome this issue, we use a dynamic programming
strategy to compute all the Kpnq’s in one run, by making
good use of the intermediate results and avoiding duplicated
operations. This process is detailed in Algorithm 1 and an
illustrating example of a 6th-order tensor is given in Figure
1. The main idea is to go through the loading matrix list
ApN´1q, . . . ,Ap2q,Ap1q from both ends, until the algorithm
reaches the results of Kp1q and KpN´1q (lines 3 to 8). After

that, for the rest of Kpiq where i P r2, N ´ 2s, they are
computed as the Khatri-Rao products of the intermediate
results from the last loop (lines 11 to 15).

For the Hpnq’s, it is obvious that calculating each individ-
ual Hpnq by itself is inefficient. Exploiting the fact that for

@i, j P r1, N´1s, Hpiq
fpApiqJApiq

q “ Hpjq
fpApjqJApjq

q “

H, in each round of update, H is calculated first, then

each Hpnq is obtained as H m pApnqJApnq
q, where m is the

element-wise division.
Finally, by putting everything together, we obtain the gen-

eral version of our OnlineCP algorithm1, as presented in
Algorithm 2 and 3.

4.3 Complexity Analysis
Following the same notation as Section 4.2, let R be the

tensor rank, S “
śN´1
i“1 Ii, and J “

řN´1
i“1 Ii. To process

a new chunk of data XXXnew, it takes up to pN ´ 1qS oper-
ations to get all the Kpnq, n P r1, N ´ 1s, and H can be
obtained in R2J ` pN ´ 2qR2 operations (lines 1 and 2 in

1We provide our Matlab implementation of OnlineCP at
http://shuo-zhou.info.

Algorithm 1: Get a list of Khatri-Rao products

Input: A list of loading matrices rApN´1q, . . . ,Ap1q
s

Output: A list of Khatri-Rao products
rKp1q, . . . ,KpN´1q

s

1 leftÐ rApN´1q
s

2 rightÐ rAp1q
s

3 if N ą 3 then
4 for nÐ 2 to N ´ 2 do

5 leftrns Ð leftrn´ 1s dApN´nq

6 rightrns Ð Apnq
d rightrn´ 1s

7 end

8 end

9 Kp1q
Ð leftrN ´ 2s

10 KpN´1q
Ð rightrN ´ 2s

11 if N ą 3 then
12 for nÐ 2 to N ´ 2 do

13 Kpnq
Ð leftrN ´ n´ 1s d rightrn´ 1s

14 end

15 end

A(4)A(4) A(2)A(2)A(3)A(3)A(5)A(5) A(1)A(1)

A(2) ⊙A(1)A(2) ⊙A(1)

A(3) ⊙A(2) ⊙A(1)A(3) ⊙A(2) ⊙A(1)

A(5) ⊙A(4)A(5) ⊙A(4)

A(5) ⊙A(4) ⊙A(3)A(5) ⊙A(4) ⊙A(3)

K(1)K(1) K(5)K(5)K(4)K(4)K(3)K(3)K(2)K(2)

A(i)A(i)A(j)A(j)

A(j) ⊙A(i)A(j) ⊙A(i)

Figure 1: A 6th-order example to get all Kpnq’s together. A
Khatri-Rao product is represented by two arrows, of which
the solid one linked to the first input. The two lists, left
and right, are indicated by the two columns on the graph.

Algorithm 3). To update the time mode, RS, Stnew, and

RStnew `R
2tnew `R

3 operations are required to get KpNq,

XnewpNq, and A
pNq
new, respectively (lines 3, 4). Note that the

pseudoinverse ppKpNq
q
J
q
: can be replaced by KpNqH: as

pA d Bq: “ ppAJAq f pBJBqq:pA d BqJ [16]. For each
non-temporal mode n (lines 7 to 10), Stnew, RStnew{In
(« Stnew, since R is usually smaller than In), RStnew and
RIn operations are required for the unfolding, Khatri-Rao,
multiplication and addition in the step to update Ppnq; and
Qpnq takes R2In`R

2tnew` 3R2 operations to update; then
the updated Apnq can be calculated in R3

` R2In opera-
tions. Thus, to update the loading matrix Apnq of mode n,
p2R2

`RqIn`pR`2qStnew`R
3
`p3`tnewqR

2 operations is
required and the whole update procedure for non-temporal
modes takes p2R2

` RqJ ` pN ´ 1qpR ` 2qStnew ` pN ´

1qpR3
` p3 ` tnewqR

2
q operations. Overall, as S is usually

much larger than other factors, the time complexity of On-
lineCP can be written as OpNRStnewq, which is constant
w.r.t. the length of processed data told.

In terms of space consumption, unlike ALS that needs
to store all the data, OnlineCP is quite efficient since only
the new data, previous loading matrices and complementary
matrices need to be recorded. Hence, the total cost of space
is Stnew ` p2J ` toldqR` pN ´ 1qR2.

Table 1: Complexity comparison between OnlineCP and existing methods.

Time Space Source

OnlineCP OpNRStnewq Stnew ` p2J ` toldqR` pN ´ 1qR2

ALS OpNRSptold ` tnewqq Sptold ` tnewq [4]
SDT OpR2

ptold ` Sqq Stnew ` pJ ` S ` 2toldqR` 3R2 [20]
RLST OpR2Sq Stnew ` pJ ` told ` 2SqR` 2R2 [20]
GridTF OpNRStnew `R2

pJ ` told ` tnewqq Stnew ` pJ ` toldqR [22]

Algorithm 2: Initialization stage of OnlineCP

Input: Initial tensor XXXinit, loading matrices
Ap1q, . . . ,ApNq

Output: complementary matrices Pp1q, . . . ,PpN´1q

and Qp1q, . . . ,QpN´1q

1 Get Kp1q,Kp2q, . . . ,KpN´1q by Algorithm 1

2 H Ð fNApiqJApiq

3 for nÐ 1 to N ´ 1 do

4 Ppnq Ð XinitpnqpA
pNq

dKpnq
q

5 Qpnq
Ð Hm pApnqJApnq

q

6 end

We summarize the complexity of our approach in Table
1, along with other existing approaches. Note that the com-
plexities of SDT and RLST are based on the exponential
window [20], which considers all existing data while lever-
ages their importance by a forgetting factor λ. In addition,
as they only work on third-order tensors, when other meth-
ods are compared to them, N should be set to 3. Another
remark is that the time complexities of ALS and GridTF
are based on one iteration only, in reality they would take a
few iterations until convergence.

5. EMPIRICAL ANALYSIS
In this section, we evaluate our OnlineCP algorithm, com-

pared to existing techniques. We first examine their effec-
tiveness and efficiency on seven real world datasets. After
that, based on the investigation on synthetic tensors, we
further analyze the critical factors that can affect the per-
formance of our approach, along with other baselines.

5.1 Real World Datasets

5.1.1 Experimental Specifications
Datasets: The experiments are conducted on seven real

world datasets of varying characteristics, all are naturally
of multi-way structures. These are two image datasets: (i)
Columbia Object Image Library (COIL); (ii) ORL Database
of Faces (FACE); three human activity datasets: (iii) Daily
and Sports Activities Data Set (DSA); (iv) University of
Southern California Human Activity Dataset (HAD); (v)
Daphnet Freezing of Gait Data Set (FOG); one chemical
laboratory dataset: (vi) Gas sensor array under dynamic
gas mixtures Data Set (GAS); and a (vii) road traffic dataset
collected from loop detectors in Victoria, Australia (ROAD).

Each dataset is represented by a tensor with its most natu-
ral structure. For instance, FACE is represented by a pixelˆ
pixel ˆ shot third-order tensor, while DSA is stored as an

Algorithm 3: Update stage of OnlineCP

Input: Loading matrices Ap1q, . . . ,ApNq,
complementary matrices Pp1q, . . . ,PpN´1q,
Qp1q, . . . ,QpN´1q, and new data tensor XXXnew

Output: Updated loading matrices Ap1q, . . . ,ApNq,
and updated complementary matrices
Pp1q, . . . ,PpN´1q, Qp1q, . . . ,QpN´1q

1 Get Kp1q,Kp2q, . . . ,KpN´1q by Algorithm 1

2 H Ð fN´1ApiqJApiq

// update ApNq

3 KpNq
Ð Kp1q

dAp1q

4 A
pNq
new Ð XnewpNqppK

pNq
q
J
q
:

5 ApNq
Ð

«

A
pNq
old

A
pNq
new

ff

// update other modes

6 for nÐ 1 to N ´ 1 do

7 Ppnq Ð Ppnq `XnewpnqpA
pNq
new dKpnq

q

8 Hpnq
Ð Hm pApnqJApnq

q

9 Qpnq
Ð Qpnq

` pA
pNq
new

J
A
pNq
newq fHpnq

10 Apnq
Ð PpnqpQpnq

q
´1

11 end

4th-order tensor of subjectˆ trailˆsensorˆ time. Further-
more, since some of our baselines can only work with third-
order tensors, for tensors with higher-order, DSA, GAS,
and HAD, we randomly extract third-order sub-tensors from
them. Conversely, to enlarge the number of higher-order
tensors, image datasets, COIL and FACE have been trans-
formed into 4th-order tensors by treating each image as a
collection of small patches, which forms the extra order. As
a result, there are five datasets having two versions of rep-
resentation: a third-order one, indicated by suffix 3D, and
a higher-order form with suffix HD. The details of these
datasets can be found in Table 2.

Baselines: In this experiment, five baselines have been
selected as the competitors to evaluate the performance.

(i) Batch Cold: an implementation of ALS algorithm in
Tensor Toolbox [4] without special initialization.

(ii) Batch Hot: the same ALS algorithm as above but
the CP decomposition of the last time step is used as the
initialization for decomposing the current tensor.

(iii) SDT [20]: an adaptive algorithm based on incremen-
tally tracking the SVD of the unfolded tensor.

(iv) RLST: another online approach proposed in [20]. In-
stead of tracking the SVD, recursive updates are performed
to minimize the mean squared error on new data.

Table 2: Details of datasets

Datasets Size
Slice Size

Source
S “

śN´1
i“1 Ii

COIL-3D 128ˆ 128ˆ 240 16,384
[19]

COIL-HD 64ˆ 64ˆ 25ˆ 240 102,400
DSA-3D 8ˆ 45ˆ 750 360

[2]
DSA-HD 19ˆ 8ˆ 45ˆ 750 6,840
FACE-3D 112ˆ 92ˆ 400 10,304

[23]
FACE-HD 28ˆ 23ˆ 16ˆ 400 10,304
FOG 10ˆ 9ˆ 1000 90 [3]
GAS-3D 30ˆ 8ˆ 2970 240

[12]
GAS-HD 30ˆ 6ˆ 8ˆ 2970 1,440
HAD-3D 14ˆ 6ˆ 500 64

[30]
HAD-HD 14ˆ 12ˆ 5ˆ 6ˆ 500 3,840
ROAD 4666ˆ 96ˆ 1826 447,936 [24]

(v) GridTF [22]: an divide-and-conqure based algorithm.
To find CP decompositions for online tensors, the partition-
ing is enforced on the time mode only.

Evaluation metrics: Two performance metrics are used
in our evaluation. Fitness is the effectiveness measurement
defined as

fitness fi

¨

˝1´

∥∥∥X̂XX´XXX

∥∥∥∥∥XXX∥∥
˛

‚ˆ 100%

where XXX is the ground truth, X̂XX is the estimation and
∥∥‚∥∥ de-

notes the Frobenius norm. In addition, the average running
time for processing one data slice, measured in seconds, is
used to validate the time efficiency of an algorithm.

Experimental setup: The experiments are divided into
two parts. The first part is to decompose the third-order
tensors with all baselines. For the second part, only Batch
Hot, GridTF and our approach are used. This is because
both SDT and RLST work on third-order tensors only, and
Batch Cold does not show better performance compared to
Batch Hot, while taking a much longer time to run.

Apart from the difference in the number of competitors,
the experimental protocol is the same for both third and
higher order tests. Specifically, for a given dataset, the first
20% of the data is decomposed by ALS and its CP decom-
position is used to initialize all algorithms. After that, the
remaining 80% of the data is appended to the existing tensor
by one slice at a time. At each time step, after processing
the appended data slice, all methods calculate the fitness
of their current decomposition with their updated loading
matrices, as well as their processing time for this new slice.
The same experiment is replicated 10 times for all datasets
on a workstation with dual Intel Xeon processors, 64 GB
RAM. The final results are averaged over these 10 runs.

There are some settings of parameters that need to be
clarified. Firstly, since we only care about the relative per-
formance comparison among different algorithms, it is not
necessary to pursue the best rank decomposition for each
dataset. As a result, the rank R is fixed to 5 for all datasets.
Additionally, for the initial CP decomposition, the tolerance
ε is set to 1e ´ 8 and the maximum number of iterations
maxiters is set to 100 to ensure a good start, as the perfor-
mance of all online algorithms depends on the quality of the
initial decomposition.

In terms of method-specific parameters, for the two batch
algorithms, the default settings, ε “ 1e´ 4 and maxiters “
50 are used. For GridTF, which contains an ALS procedure
for the new data slice and a recursively update procedure
for estimating the whole current tensor, the same default
parameters are chosen for the ALS step; while ε “ 1e´2 and
maxiters “ 50 are used for the update phase. Additionally,
since batch algorithms do not provide a weighting strategy
to differentiate the importance of data, in order to make a
fair comparison, all the data slices are equally treated and
there is no difference between older and newer ones in terms
of their weights, which means the exponential window is
used with λ “ 1 in SDT and RLST.

5.1.2 Results
Given a particular dataset and a specific algorithm, its

fitness and processing time are two time series (averaged
over 10 runs). We take the mean values of them and report
the results for third-order tensors in Table 3 and the higher-
order tensors in Table 4. In addition, for the four online
approaches, SDT, RLST, GridTF and OnlineCP, their rela-
tive performances compared to Batch Hot are also shown in
the parenthesis. Finally, the best results among these four
are indicated by boldface.

As can be seen from Table 3, for the two batch methods,
there is no significant difference on their effectiveness. How-
ever, on all third-order datasets, the fitness of Batch Cold is
slightly worse than that of Batch Hot. The main reason is
that using the previous results as initialization can provide
the ALS algorithm with a descent seeding point. In con-
trast, every time Batch Cold totally discards this useful in-
formation and starts to optimize from the beginning, which
cannot guarantee a better or even same-quality estimation
in the end. In fact, this also results in the longer running
time of Batch Cold compared with Batch Hot, where the
former is usually more than 10 times slower than the latter.
On the other hand, even though Batch Hot improves the ef-
ficiency, its time cost is still considerably high, especially for
large-scale datasets. For example, on average it takes more
than 20 seconds to process one additional data slice on the
ROAD dataset, while OnlineCP takes only 0.0068 seconds.

As the earliest studies of online CP decomposition, both
SDT and RLST address this efficiency issue very well. Com-
pared with Batch Hot, they shorten the mean running time
by up to 400 times. RLST, in particular, was the most
efficient online algorithm on 4 out of 7 third-order tensor
datasets. In fact, the efficiency of SDT is quite close to
RLST, except for the GAS dataset, whose length of time
mode is significantly higher than other datasets. This shows
that SDT is more sensitive to the growth of time. However,
the main issue of SDT and RLST is their estimation accu-
racy. For some datasets, such as COIL and HAD, they work
fine, while for some others like DSA, they exhibit fairly poor
accuracy, achieving only nearly half of the fitness of batch
methods. The same accuracy problem can be observed in
GridTF as well. In terms of efficiency, there is no signifi-
cant difference between GridTF and Batch Hot, at least on
the small size datasets. In fact, we notice that a substantial
amount of time of GridTF is consumed by decomposing the
new data slice and this cost is particularly dominant when
the tensor size is not large enough. This can be confirmed
by observing its generally better efficiency on higher-order
datasets, compared to the third-order ones.

Table 3: Experimental results of third-order datasets

(a) Mean fitness of third-order datasets over time (in %, the higher the values the better). For
SDT, RLST, GridTF and OnlineCP, ratios of their fitness to the result of Batch Hot are shown
in parenthesis. Boldface indicates the best result among these four online approaches.

Datasets Batch Cold Batch Hot SDT RLST GridTF OnlineCP

COIL-3D 58.31 58.76 51.31(0.87) 56.27(0.96) 54.13(0.92) 57.43(0.98)
DSA-3D 57.50 57.88 26.30(0.45) 27.44(0.47) 48.85(0.84) 57.51(0.99)
FACE-3D 75.35 75.69 70.64(0.93) 46.84(0.62) 71.91(0.95) 75.31(0.99)
FOG-3D 48.38 48.95 40.90(0.84) 41.28(0.84) 25.94(0.53) 44.39(0.91)
GAS-3D 86.56 87.06 43.93(0.50) 57.92(0.67) 48.64(0.56) 84.94(0.98)
HAD-3D 28.97 29.34 26.14(0.89) 28.33(0.97) 27.56(0.94) 28.54(0.97)

ROAD* 79.25 79.94 15.45(0.21) 61.23(0.77) N/A 79.72(1.00)

(b) Mean running time of third-order datasets for processing one data slice (in seconds). For SDT, RLST, GridTF
and OnlineCP, the ratios between the running time of Batch Hot and theirs are shown in parenthesis. Boldface
indicates the best result among these four online approaches.

Datasets Batch Cold Batch Hot SDT RLST GridTF OnlineCP

COIL-3D 3.0255 0.1944 0.0037(52.06) 0.0041(47.79) 0.0446(4.36) 0.0017(115.36)
DSA-3D 0.3627 0.0246 0.0005(52.41) 0.0003(72.45) 0.0332(0.74) 0.0004(57.28)
FACE-3D 1.2616 0.1430 0.0034(42.06) 0.0037(38.47) 0.0439(3.26) 0.0019(73.87)
FOG-3D 0.2805 0.0198 0.0005(39.43) 0.0003(72.01) 0.0285(0.70) 0.0004(53.33)
GAS-3D 0.4095 0.0314 0.0015(20.82) 0.0003(91.53) 0.0265(1.18) 0.0005(64.91)
HAD-3D 0.1867 0.0154 0.0004(41.44) 0.0003(60.94) 0.0158(0.98) 0.0004(43.76)

ROAD* 309.5064 23.6683 0.0582(406.67) 0.0573(413.0593) N/A 0.0068(3480.63)
* The result is based on only 1 run, due to the huge time consumption of batch methods. Figures of Batch Cold
are estimated based on its average performance on other datasets, compared to Batch Hot. GridTF failed on this
dataset because of the singular matrix problem, resulting from the large chunks of missing data in some sensors.

Table 4: Experimental results of higher-order datasets.

(a) Mean fitness of higher-order datasets over time (in
%, the higher the values the better). For GridTF and
OnlineCP, ratios of their fitness to the result of Batch
Hot are also shown in parenthesis. Boldface indicates
the best result between these two online approaches.

Datasets Batch Hot GridTF OnlineCP

COIL-HD 57.43 42.69(0.74) 56.83(0.99)
DSA-HD 62.76 61.33(0.98) 62.54(1.00)
FACE-HD 74.78 67.47(0.90) 74.45(1.00)
GAS-HD 79.38 61.05(0.77) 75.71(0.95)
HAD-HD 67.36 65.57(0.97) 67.28(1.00)

(b) Mean running time of higher-order datasets for process-
ing one data slice (in seconds). For GridTF and OnlineCP,
the ratios between the running time of Batch Hot and theirs
are shown in parenthesis. Boldface indicates the best result
between these two online approaches.

Datasets Batch Hot GridTF OnlineCP

COIL-HD 2.1264 0.1935(10.99) 0.0076(280.44)
DSA-HD 0.2217 0.0896(2.48) 0.0029(75.43)
FACE-HD 0.3795 0.1438(2.64) 0.0040(94.15)
GAS-HD 0.3154 0.1807(1.75) 0.0016(203.47)
HAD-HD 0.1750 0.0922(1.90) 0.0041(42.23)

Our proposed algorithm, OnlineCP, shows very promising
results in both accuracy and speed. On every dataset, both
third-order and higher-order ones, our method reaches the
best fitness among all online algorithms. More importantly,
the estimation performance of our approach is quite sta-
ble and very comparable to the results of batch techniques.
In most of the cases, the fitness of OnlineCP is less than
3% lower than that of the most accurate algorithm, Batch
Hot. However, the speed of OnlineCP is orders of magni-
tudes faster than Batch Hot. On small and moderate size
datasets, OnlineCP can be tens to hundreds of times faster
than Batch Hot; and on the largest dataset, ROAD, On-
lineCP improves the efficiency of Batch Hot by more than
3,000 times. Additionally, compared with another fast ap-
proach, RLST, although OnlineCP is outperformed on four
datasets, its speed on these datasets is quite close to the
best. On the other hand, we notice that all these datasets
have fairly small slice size. In contrast, on those datasets
with larger slices, such as COIL and FACE, the time con-
sumption of our method clearly grows slower than that of
RLST, showing that OnlineCP is less sensitive to the size of
the data, and thus, having better scalability.

5.2 Sensitivity to Initialization
Throughout our experiments, an interesting observation

was made: for all adaptive algorithms that make use of
the previous step results, namely Batch Hot, SDT, RLST,
GridTF, and OnlineCP, their best results are usually linked
to a good initial fitness, while poor-quality initializations of-
ten lead them to subsequent under-fitting. To explore the
impact of initialization to each algorithm, the following ex-

Table 5: The final fitness averaged over 200 runs with dif-
ferent initial fitness. Results are displayed as mean ˘ std,
where mean is the average final fitness and std is the stan-
dard deviation, both in % (the higher the values the better).

Final Fitness

Batch Hot 82.57˘10.1474
SDT 7.68˘55.5205
RLST 33.15˘36.9270
GridTF 57.43˘15.2148
OnlineCP 67.67˘12.9846

periment has been conducted. We generate a synthetic ten-
sor XXX P R20ˆ20ˆ100 by constructing from random loading
matrices and then downgrade it by a Gaussian noise with a
Signal-to-Interference Rate (SIR) of 20 dB. The best fitness
to XXX in 10 runs of ALS is 90.14%. This tensor is then repeat-
edly decomposed by the above five methods for 200 times.
At the beginning of each run, half of the data is used for
initialization by ALS with a random tolerance from 9e ´ 1
to 1e ´ 4, to produce different level of initial fitness. Then
the rest of data is sequentially added and processed by each
online algorithm. The averaged final fitness over all runs
is used as the effectiveness indicator, as well as the stan-
dard deviation. Table 5 shows the experimental results with
average initial fitness as 65.78% and standard deviation as
15.3704%.

As shown in Table 5, overall, the low quality initialization
has a negative impact on all algorithms. Even the most pow-
erful one, Batch Hot, cannot always reach the best fitness
and shows a decline of 10%. For SDT and RLST, it turns
out that both algorithms are significantly dependent on the
initial fitness. When the initial fitness is lower than the best
value, their performance can quickly drop to an unaccept-
able level. In addition, their results are also highly unstable,
as demonstrated by a large variance. While both GridTF
and OnlineCP exhibit much more stable performance, the
final fitness of GridTF is considerably lower than our ap-
proach OnlineCP. This experimental evidence demonstrates
that the proposed algorithm, OnlineCP, is less sensitive to
the quality of the initialization, compared with exiting online
methods. However, it can be seen that good initialization
still plays an important role to our algorithm. Thus, for
applying our method, we suggest to validate the goodness
of the initialization at the beginning, in order to obtain the
best subsequent effectiveness.

5.3 Scalability Evaluation
According to Section 4.3, the time complexity of each al-

gorithm is mainly determined by the slice size and the length
of processed data. To confirm our analysis and evaluate the

scalability of our algorithm, firstly, a tensor XXX P R20ˆ20ˆ105

of small slice size but long time dimension is decomposed.
After initializing with data of the first 100 timestamps, each
method’s running time for processing one data slice at each
time step is measured and displayed in Figure 2. In addi-
tion, to examine the impact of slice size to efficiency, we fix
the time mode to 100, and generate a group of tensors of
different slice sizes, ranging from 100 to 9 ˆ 106. For each
tensor, its first 20% of data is used for initialization and the
average running time for processing the rest data slices is

Length of Time Mode ×10
4

0 2 4 6 8 10

R
u
n
n
in

g
 T

im
e

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Batch Hot

SDT

RLST

GridTF

GridTF-update

OnlineCP

(a)

Length of Time Mode ×10
4

0 2 4 6 8 10

R
u
n
n
in

g
 T

im
e

0

0.005

0.01

0.015

0.02

0.025

SDT

RLST

GridTF

GridTF-update

OnlineCP

(b)

Figure 2: Running time (in seconds) for adding one slice to
a 20 ˆ 20 ˆ pt ´ 1q tensor at time t. Two figure represents
the same information, differing only in the y-axis scale.

Slice Size ×10
6

0 2 4 6 8 10

R
u
n
n
in

g
 T

im
e

10
-4

10
-2

10
0

10
2

Batch Hot

SDT

RLST

GridTF

OnlineCP

(a)

Slice Size ×10
6

0 2 4 6 8 10

R
u

n
n

in
g

 T
im

e

0

2

4

6

8

10

12

Batch Hot

SDT

RLST

GridTF

OnlineCP

(b)

Figure 3: Running time (in seconds) for processing different
size of tensors. Two figure represents the same information,
differing only in the y-axis scale.

shown in Figure 3. For better comparison, both Batch Hot
and GridTF are forced to execute 1 iteration only in these
two experiments. Note that the y-axis of Figures 2a and 3a
is displayed in log scale and in Figure 2b, Batch Hot has
been removed for better visibility.

As can be seen from Figure 2, both RLST and OnlineCP
show constant complexities and the increasing length of pro-
cessed data has no impact on them. For the other ap-
proaches, a clear linear growth with time can be observed
in Batch Hot and SDT, which makes them less feasible for
online learning purposes. The change of time consumption
in GridTF is less obvious compared with Batch Hot and
SDT. However, after removing the time used by its inner
ALS procedure, similar linear trend can be seen, marked as
GridTF-update in the figure.

In terms of slice size, it turns out that the time consump-
tion of all approaches are linearly increasing as the slice size
grows. However, their slopes vary. Both Batch Hot and SDT
show quicker growth compared to others. This is reasonable
since the impact of slice size to them is also leveraged by
the time mode. On the other hand, GridTF outperforms
SDT and RLST when the slice gets larger. This is because
the growth of slice size has impact only on its ALS proce-
dure, which is scaled by R times, while the coefficients in
the complexities of SDT and RLST w.r.t. slice size contain
an R2 term. Once again, our proposed algorithm illustrates
the best performance in this experiment and even a large
3000 ˆ 3000 data slice can be efficiently processed in 0.1
second.

6. CONCLUSIONS AND FUTURE WORK
To conclude, in this paper, we address the problem of

tracking the CP decomposition of online tensors. An online
algorithm, OnlineCP, is proposed, which can efficiently track
the new decomposition by using complementary matrices to
temporally store the useful information of the previous time
step. Furthermore, our method is not only applicable to
third-order tensors, but also suitable for higher-order tensors
that have more than 3 modes. As evaluated on both real
world and synthetic datasets, our algorithm demonstrates
comparable effectiveness with the most accurate batch tech-
niques, while significantly outperforms them in terms of ef-
ficiency. Additionally, compared with the state-of-art on-
line techniques, the proposed algorithm shows advantages
in many aspects, including effectiveness, efficiency, stability
and scalability.

There is still room for improving our method. One direc-
tion is to further extend it for more general dynamic ten-
sors that may be changed on any modes [11]. Another po-
tential direction is to incorporate constraints, such as non-
negativity [13], so that our method can be more suitable for
applications such as computer vision.

Acknowledgments
This work is supported by the Australian Research Council
via grant number DP140101969.

7. REFERENCES
[1] E. Acar, et al. Scalable tensor factorizations for

incomplete data. Chemometrics and Intelligent
Laboratory Systems, 106(1):41–56, March 2011.

[2] K. Altun, et al. Comparative study on classifying
human activities with miniature inertial and magnetic
sensors. Pattern Recognition, 43(10):3605–3620, 2010.

[3] M. Bächlin, et al. Wearable assistant for parkinson’s
disease patients with the freezing of gait symptom.
IEEE Trans. Inf. Tech. Biomed., 14(2):436–446, 2010.

[4] B. W. Bader, T. G. Kolda, et al. Matlab tensor
toolbox version 2.6. Available online, February 2015.

[5] Y. Cai, et al. Facets: Fast comprehensive mining of
coevolving high-order time series. In SIGKDD, 2015.

[6] A. Cichocki. Era of big data processing: a new
approach via tensor networks and tensor
decompositions. arXiv preprint arXiv:1403.2048, 2014.

[7] A. Cichocki, et al. Tensor decompositions for signal
processing applications: From two-way to multiway
component analysis. Signal Processing Magazine,
IEEE, 32(2):145–163, 2015.

[8] P. Comon, X. Luciani, and A. L. De Almeida. Tensor
decompositions, alternating least squares and other
tales. J. Chemometrics, 23(7-8):393–405, 2009.

[9] L. De Lathauwer, et al. On the best rank-1 and
rank-(r 1, r 2,..., rn) approximation of higher-order
tensors. SJMAEL, 21(4):1324–1342, 2000.

[10] D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal
link prediction using matrix and tensor factorizations.
TKDD, 5(2):10, 2011.

[11] H. Fanaee-T and J. Gama. Multi-aspect-streaming
tensor analysis. Knowledge-Based Systems,
89:332–345, 2015.

[12] J. Fonollosa, et al. Reservoir computing compensates
slow response of chemosensor arrays exposed to fast
varying gas concentrations in continuous monitoring.
Sens. Actuator B-Chem., 215:618–629, 2015.

[13] C. Hu, et al. Scalable bayesian non-negative tensor
factorization for massive count data. In
ECML-PKDD, 2015.

[14] W. Hu, et al. Incremental tensor subspace learning
and its applications to foreground segmentation and
tracking. IJCV, 91(3):303–327, 2011.

[15] T. G. Kolda. Multilinear operators for higher-order
decompositions. Tech. Report SAND2006-2081,
Sandia National Laboratories, April 2006.

[16] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM review, 51(3):455–500, 2009.

[17] W. Liu, et al. Utilizing common substructures to
speedup tensor factorization for mining dynamic
graphs. In CIKM, 2012.

[18] X. Ma, et al. Dynamic updating and downdating
matrix svd and tensor hosvd for adaptive indexing
and retrieval of motion trajectories. In ICASSP, 2009.

[19] S. A. Nene, et al. Columbia Object Image Library
(COIL-20). Tech. report, Feb 1996.

[20] D. Nion, et al. Adaptive algorithms to track the
parafac decomposition of a third-order tensor. IEEE
Trans. Sig. Process., 57(6):2299–2310, 2009.

[21] S. Papadimitriou, et al. Streaming pattern discovery
in multiple time-series. In VLDB, 2005.

[22] A. H. Phan, et al. Parafac algorithms for large-scale
problems. Neurocomputing, 74(11):1970–1984, 2011.

[23] F. S. Samaria, et al. Parameterisation of a stochastic
model for human face identification. In WACV, 1994.

[24] F. Schimbinschi, et al. Traffic forecasting in complex
urban networks: Leveraging big data and machine
learning. In Big Data, 2015.

[25] L. Shi, et al. Stensr: Spatio-temporal tensor streams
for anomaly detection and pattern discovery. KAIS,
43(2):333–353, 2015.

[26] A. Sobral, et al. Incremental and multi-feature tensor
subspace learning applied for background modeling
and subtraction. In ICIAR, 2014.

[27] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In SIGKDD, 2006.

[28] J. Sun, et al. Incremental tensor analysis: Theory and
applications. TKDD, 2(3):11, 2008.

[29] M. A. O. Vasilescu, et al. Multilinear analysis of image
ensembles: Tensorfaces. In ECCV, 2002.

[30] M. Zhang and A. A. Sawchuk. Usc-had: A daily
activity dataset for ubiquitous activity recognition
using wearable sensors. In Ubicomp-SAGAware, 2012.

