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Introduction



Tensor

Vector Matrix Tensor

Tensors (multi-way array) are a natural representation for multi-
dimensional data, e.g., videos, time-evolving networks



CP Decomposition

Matrix 
Factorization

CP 
Decomposition

CP decomposition is a method to simplify and summarize tensors



Research Question

Sparse CPD

Dynamic 
Updates

Constraints

Desirable properties of a tensor decomposition



Sparse Tensors

• Role of zero: 3 possible cases
1) True observations: equally important to non-zeros

e.g., intersection × intersection × time

2) Missing values: no contribution
e.g., context-aware recommender systems with explicit ratings

3) Implicit information: less important than observations
e.g., context-aware recommender systems with implicit ratings

(clicks on ads)

Image source: http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/sparse.html



Constrained Decomposition

• Usually provides interpretable 
and meaningful results

• Non-negativity
• Additive contributions of factors

• Regularizations
• Sparseness: L1 norm

• Prevent overfitting: Frobenius norm



Dynamic Learning

• When new cell entries arrive, how to efficiently 
update an existing decomposition?
• e.g., recommender systems, new ratings



Preliminaries



CP Decomposition

Matrix 
Factorization

CP 
Decomposition



Existing Methods

ALS WOPT iTALS

Efficiency & 
Scalability

General True Observations Missing Values Implicit Information

Constraints

Dynamic



Our Approach



A uniform formulation that covers 
all 3 cases

True 
Observations 

(α = 1)

Implicit 
Information 
(α ∈ (0, 1))

Missing Values 
(α = 0)



SCED Algorithm

• Update one parameter at a time 
by fixing all others

• Good convergence

• Linear complexity w.r.t. the 
number of non-zeros and 
decomposition rank

• Easy to incorporate constraints

• Suitable for dynamic learning



Time Complexity

SCED Baseline

True Observations
(α = 1)

Missing Values
(α = 0)

Implicit 
Information
(α ∈ (0, 1))

Ω+ : the number of non-zeros
𝑅: the decomposition rank



Constraints

• Non-negativity
• set all negative updates to ε (ε is non-negative and close to zero)

• Regularizations
•



Dynamic Learning

A new entry will only significantly affect 
its corresponding rows in loading matrices



Experiments



Setup

• E1: Performance under static setting
• 90% training, 10% testing

• E2: Performance under dynamic setting
• 80% training, 10% dynamic, 10% testing

• E3: Scalability Performance

• Evaluation metrics
• Efficiency

• Running time in seconds

• Effectiveness
• RMSE and Fitness



Datasets

Datasets Size Ω+ Density

MovieLens1 6040*3952*1040 1 ∗ 106 4 ∗ 10−5

LastFM2 991*1000*168 2.9 ∗ 106 1.7 ∗ 10−2

MathOverflow3 24818*24818*2351 4 ∗ 105 2.7 ∗ 10−7

• Synthetic datasets
• SYN-TO, SYN-MV, SYN-II

• 200*200*200

• R = 20

• Density = 1%
1 www.movielens.org
2 www.last.fm
3 mathoverflow.net

• Real-world datasets



Baselines
• ALS (Bader & Kolda et al., 2015)

• For TO case

• Update one loading matrix by fixing others

• MU (Bader & Kolda et al., 2015)
• For TO case

• Non-negative CP decomposition based on multiplicative update rule

• WOPT (Acar et al., 2011)
• For MV case

• Update all parameter by optimization

• iTALS (Hidasi et al., 2012)
• For II case

• Row-wise update



Results – Static Setting

• Better convergence over MU and WOPT
• Assigning small weight to zero entries is helpful
• Improved better efficiency compared to state-of-the-arts

SCED

Baselines

LastFM



Results – Dynamic Setting

Running Time 
(seconds)

Speedup

Batch 490 25,675x

iTALS 0.0484 2.6x

SCED 0.0185

• Batch has no latest decomposition

• Highly effective dynamic update schema

• Speeding up batch method by ~26K times

LastFM



SCED can work with all type of data dynamically

zeros are missing 
values

zeros are true 
observations

zeros are implicit 
information



Results - Scalability



Conclusions



Conclusions

• A unified formulation for sparse CPD

• An efficient and scalable algorithm
• Able to incorporate constraints

• Can dynamically track the new CPD on-the-fly.

• Significant performance gains in effectiveness, 
efficiency and scalability
• Good convergence and better efficiency for the static case

• Highly effective dynamic update schema ( >20K times speedup )

If you have a sparse tensor, 
try SCED!



Future Work

• Relationships to existing online tensor decomposition

• Handling other types of dynamic cases
• e.g., deletions and updating 

• Apply to real-world applications with domain-
specified constraints (e.g., recommender systems)



Q & A


