SCED: A General Framework for <u>Sparse Tensor</u> Decomposition with <u>Constraints</u> and <u>Elementwise Dynamic Learning</u>

Shuo Zhou, Sarah M. Erfani and James Bailey School of Computing and Information Systems

The University of Melbourne

ICDM'17 New Orleans

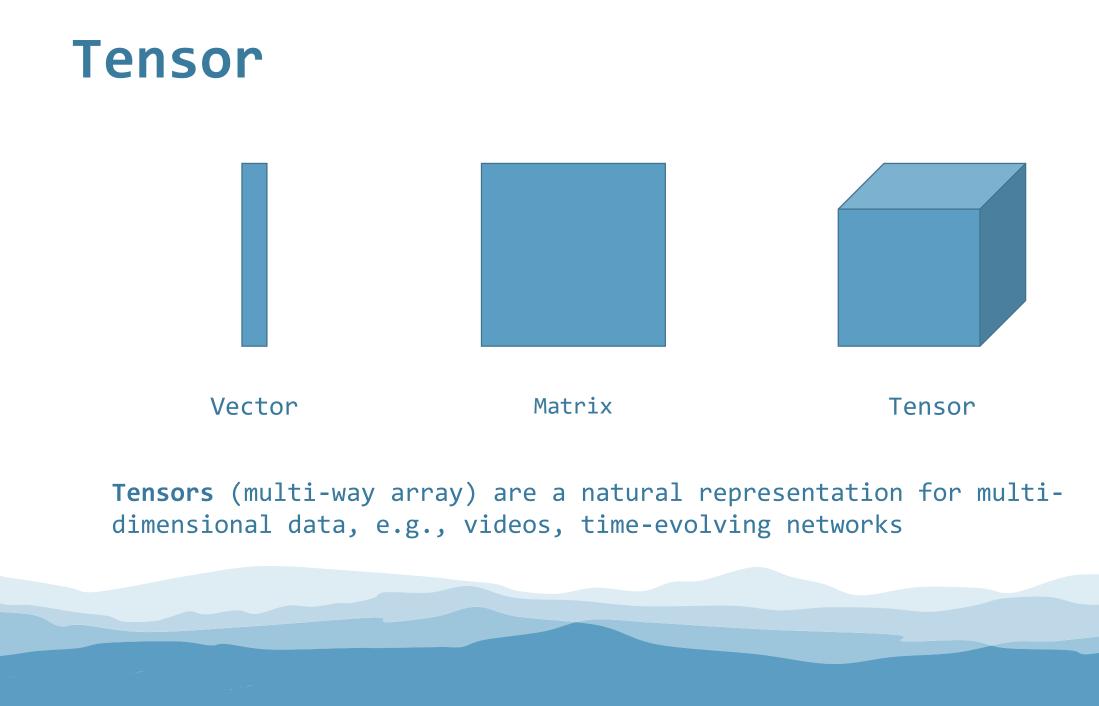
Introduction Preliminaries

010 Our Approach

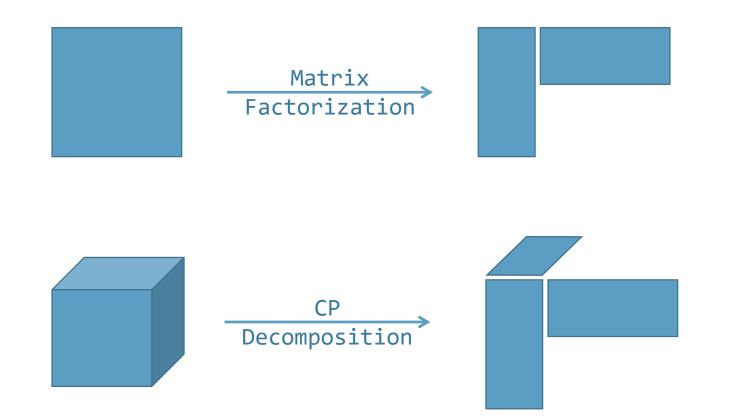
Experiments **100** Conclusions



Introduction

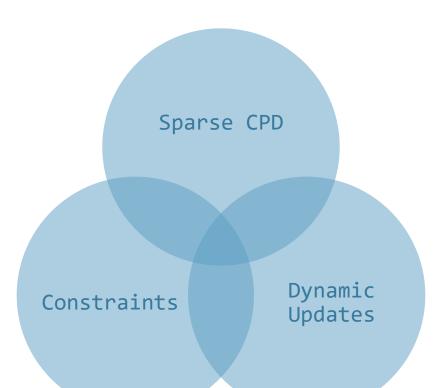


CP Decomposition



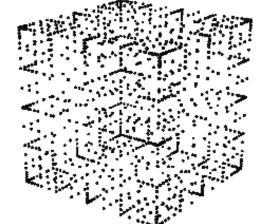
CP decomposition is a method to simplify and summarize tensors

Research Question



Desirable properties of a tensor decomposition

Sparse Tensors

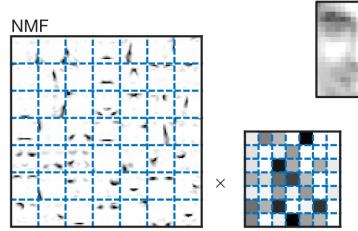


- Role of zero: 3 possible cases
 - 1) True observations: equally important to non-zeros
 - e.g., intersection × intersection × time
 - 2) Missing values: no contribution

e.g., context-aware recommender systems with explicit ratings
3) Implicit information: less important than observations
 e.g., context-aware recommender systems with implicit ratings
 (clicks on ads)

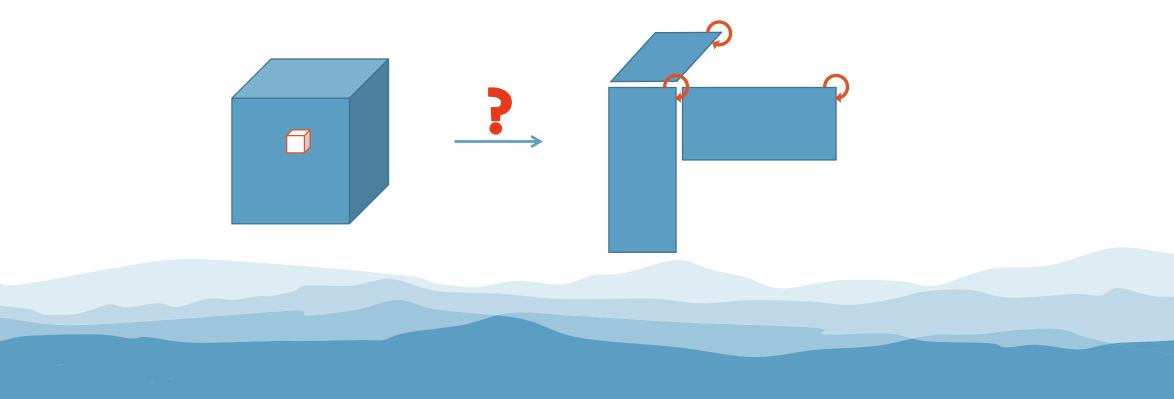
Constrained Decomposition

- Usually provides interpretable and meaningful results
- Non-negativity
 - Additive contributions of factors
- Regularizations
 - Sparseness: L1 norm
 - Prevent overfitting: Frobenius norm



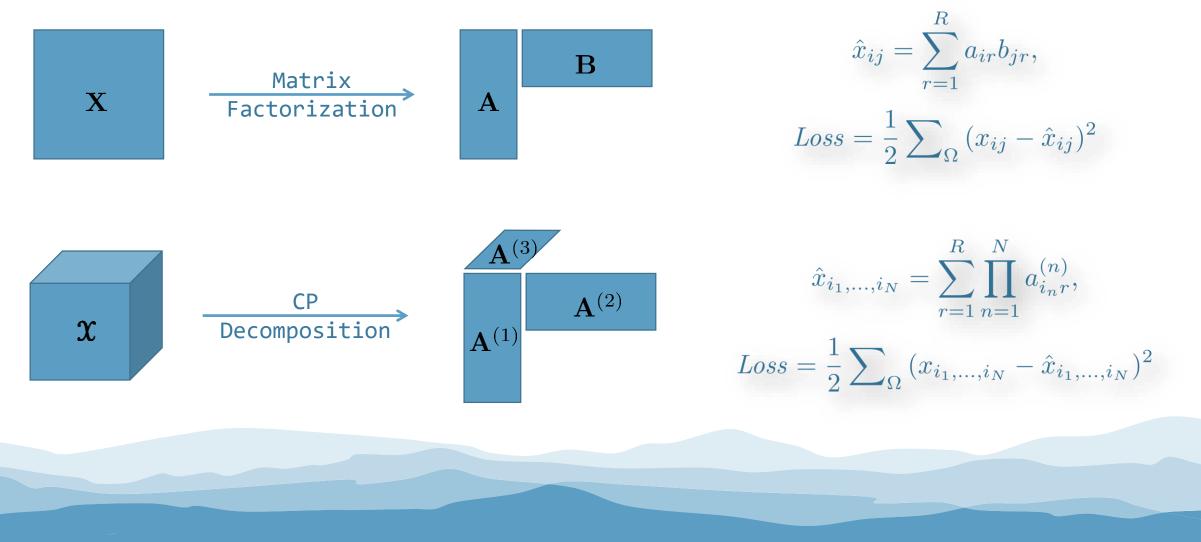
Dynamic Learning

- When new *cell entries* arrive, how to efficiently update an existing decomposition?
 - e.g., recommender systems, new ratings

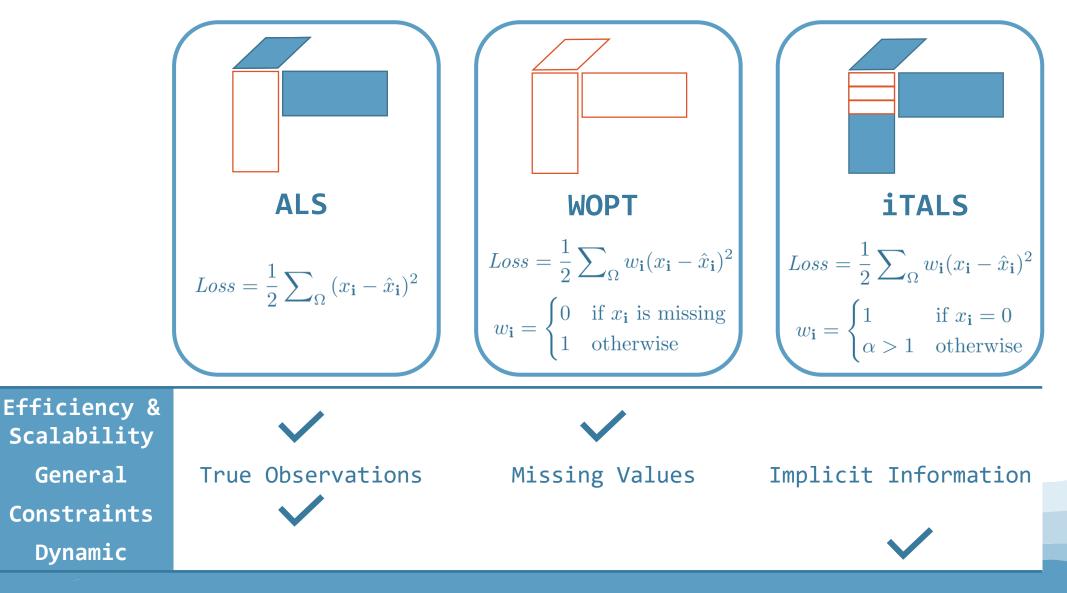


Preliminaries

CP Decomposition

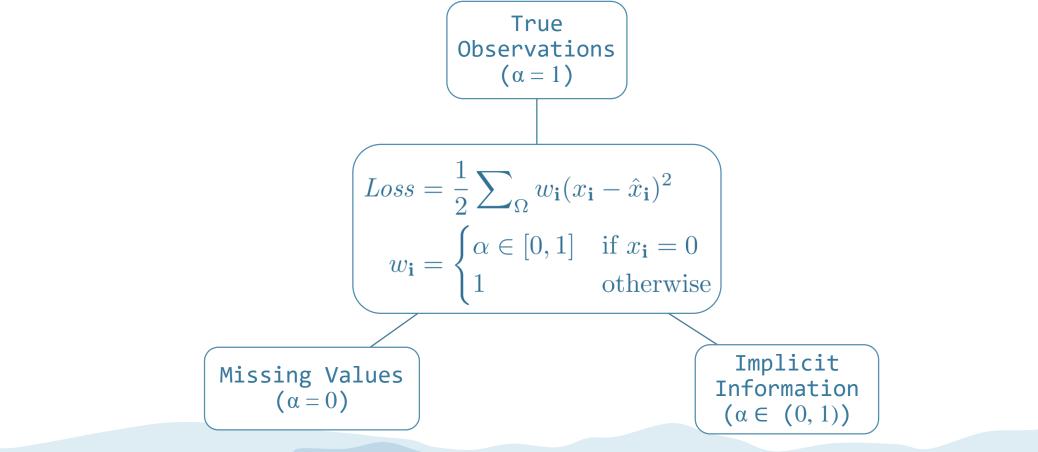


Existing Methods

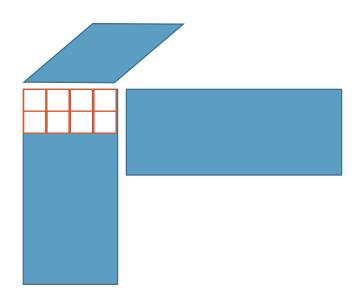


Our Approach

A uniform formulation that covers all 3 cases



SCED Algorithm



- Update one parameter at a time by fixing all others
- Good convergence
- Linear complexity w.r.t. the number of non-zeros and decomposition rank
- Easy to incorporate constraints
- Suitable for dynamic learning

Time Complexity

	SCED	Baseline	
True Observations $(\alpha = 1)$	$\mathcal{O}(\Omega^+ R)$		
Missing Values $(\alpha = 0)$	$\mathcal{O}(\mathcal{SL} \mathcal{IL})$		
Implicit Information $(\alpha \in (0, 1))$	$\mathcal{O}(\Omega^+ R)$	$\mathcal{O}(\Omega^+ R^2)$	

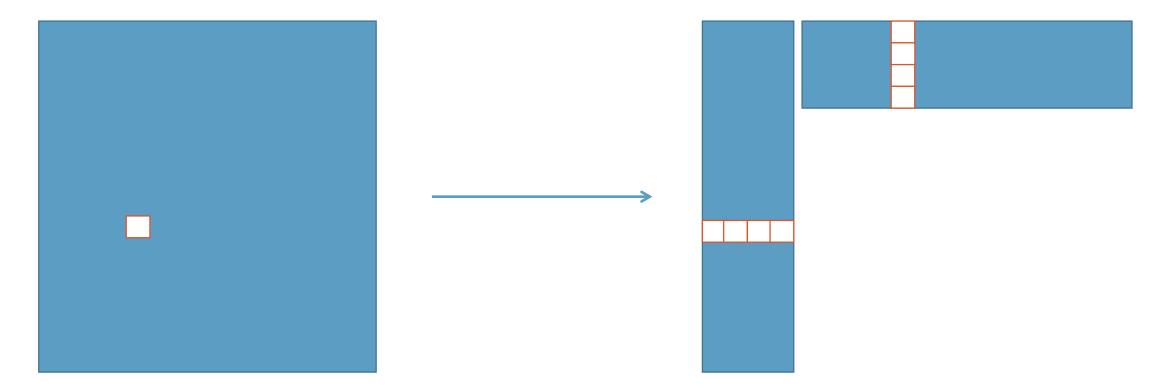
 $|\Omega^+|$: the number of non-zeros R: the decomposition rank

Constraints

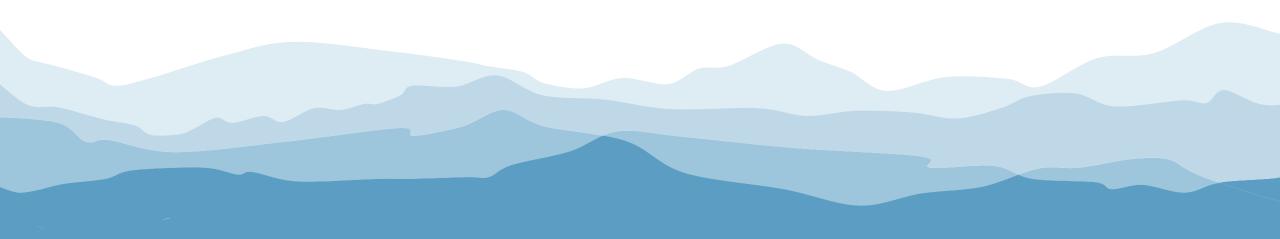
- Non-negativity
 - set all negative updates to ϵ (ϵ is non-negative and close to zero)
- Regularizations

•
$$Loss + \sum_{n=1}^{N} \lambda_n \phi_n(\mathbf{A}^{(n)})$$

Dynamic Learning



A new entry will only significantly affect its corresponding rows in loading matrices



Experiments

Setup

- E1: Performance under static setting
 - 90% training, 10% testing
- E2: Performance under dynamic setting
 - 80% training, 10% dynamic, 10% testing
- E3: Scalability Performance
- Evaluation metrics
 - Efficiency
 - Running time in seconds
 - Effectiveness
 - RMSE and Fitness

$$\textit{fitness} \triangleq \left(1 - \frac{\left\|\hat{\mathbf{X}} - \mathbf{X}\right\|_{F}}{\left\|\mathbf{X}
ight\|_{F}}
ight)$$

Datasets

- - SYN-TO, SYN-MV, SYN-II
 - 200*200*200
 - R = 20
 - Density = 1%

• Synthetic datasets • Real-world datasets

Datasets	Size	$ \Omega^+ $	Density
MovieLens ¹	6040*3952*1040	1 * 10 ⁶	$4 * 10^{-5}$
LastFM ²	991*1000*168	2.9 * 10 ⁶	$1.7 * 10^{-2}$
MathOverflow ³	24818*24818*2351	$4 * 10^5$	$2.7 * 10^{-7}$

1 www.movielens.org

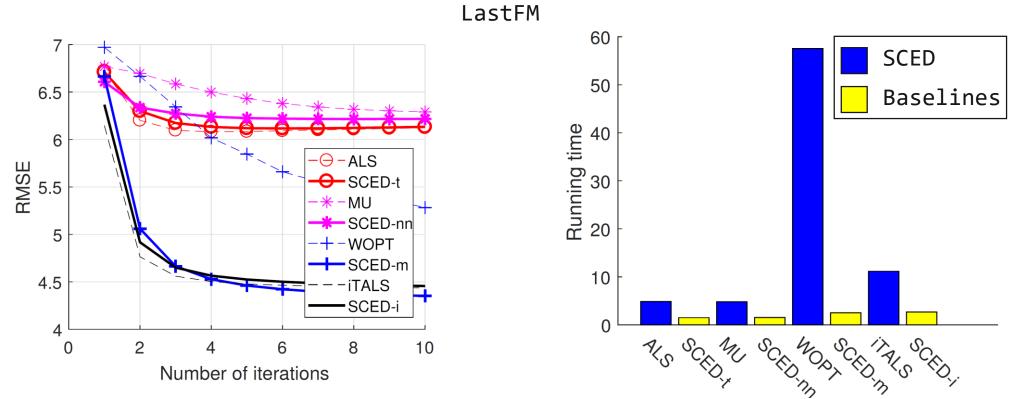
2 www.last.fm

3 mathoverflow.net

Baselines

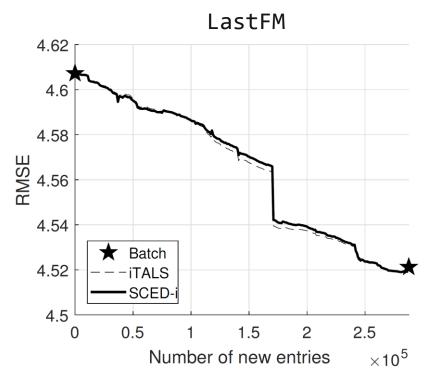
- ALS (Bader & Kolda et al., 2015)
 - For TO case
 - Update one loading matrix by fixing others
- MU (Bader & Kolda et al., 2015)
 - For TO case
 - Non-negative CP decomposition based on multiplicative update rule
- WOPT (Acar *et al.*, 2011)
 - For MV case
 - Update all parameter by optimization
- iTALS (Hidasi et al., 2012)
 - For II case
 - Row-wise update

Results - Static Setting



- Better convergence over MU and WOPT
- Assigning small weight to zero entries is helpful
- Improved better efficiency compared to state-of-the-arts

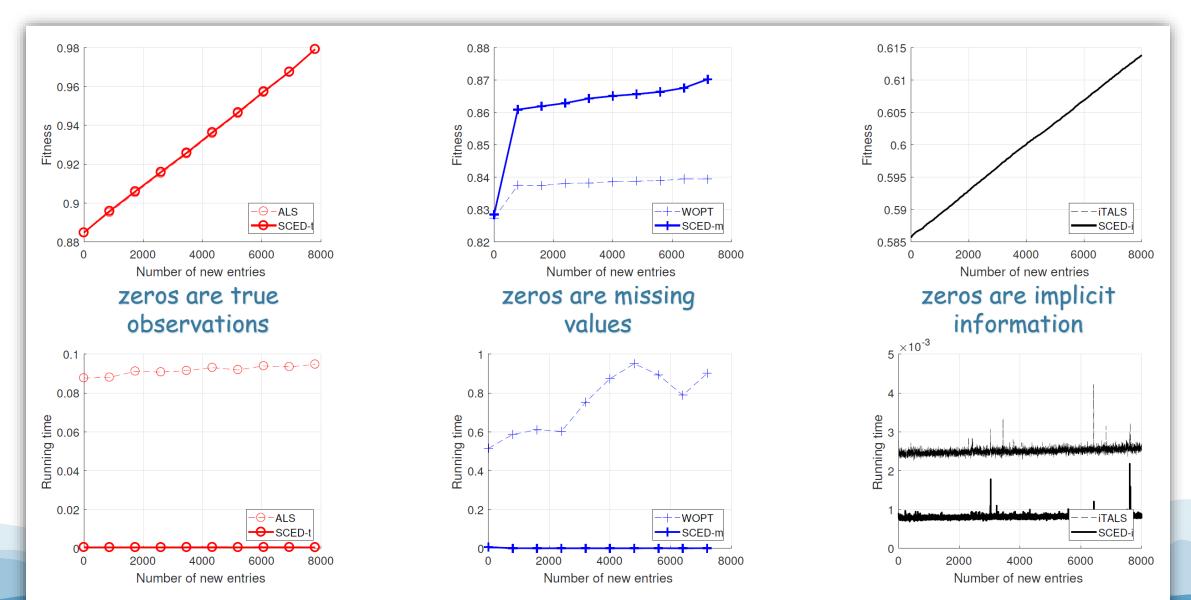
Results - Dynamic Setting



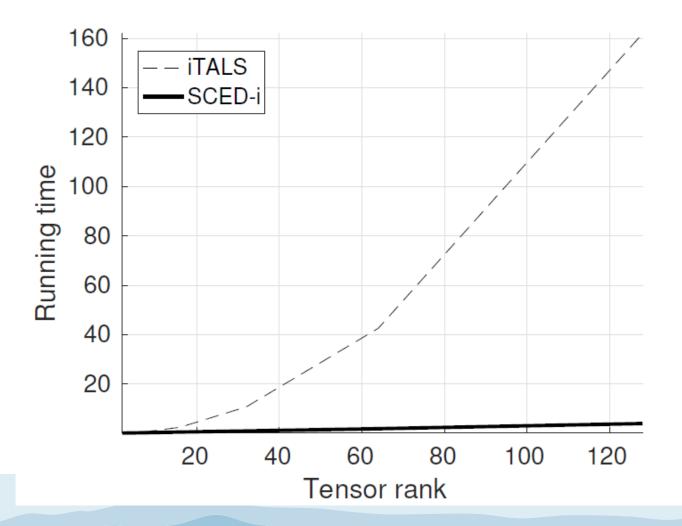
	Running Time (seconds)	Speedup
Batch	490	25,675x
iTALS	0.0484	2.6x
SCED	0.0185	

- Batch has no latest decomposition
- Highly effective dynamic update schema
- Speeding up batch method by ~26K times

SCED can work with all type of data dynamically



Results - Scalability



Conclusions

Conclusions

- A unified formulation for sparse CPD
- An efficient and scalable algorithm
 - Able to incorporate constraints
 - Can dynamically track the new CPD on-the-fly.
- Significant performance gains in effectiveness, efficiency and scalability
 - Good convergence and better efficiency for the static case
 - Highly effective dynamic update schema (>20K times speedup)

If you have a sparse tensor, try SCED!

Future Work

- Relationships to existing online tensor decomposition
- Handling other types of dynamic cases
 - e.g., deletions and updating
- Apply to real-world applications with domainspecified constraints (e.g., recommender systems)

Q & A